• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 258
  • 126
  • 44
  • 19
  • 15
  • 12
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 539
  • 270
  • 267
  • 267
  • 267
  • 34
  • 34
  • 25
  • 25
  • 25
  • 25
  • 25
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Arizona's Multi-agency Resistance Management Program for Bt Cotton: Sustaining the Susceptibility of Pink Bollworm

Sims, Maria A., Dennehy, Timothy J., Patin, Amanda, Carrière, Yves, Liu, Yong-Biao, Tabashnik, Bruce, Antilla, Larry, Whitlow, Mike January 2001 (has links)
Bt cotton has been used in Arizona since 1996 with exceptionally positive results in terms of economic returns to growers and reductions in insecticide use in cotton. Yet, the isolation of pink bollworm highly resistant to Bt cotton from collections made in Arizona in 1997 demonstrated the seriousness of the threat that resistance poses to transgenic Bt technology. For this reason unparalleled measures have been taken to detect and manage resistance of pink bollworm to Bt cotton in Arizona. This paper presents results of statewide monitoring of pink bollworm susceptibility to the Bt toxin, Cry1Ac, conducted from 1997 to 1999. Mean susceptibility of Arizona pink bollworm to Cry1Ac increased from 1997 to 1999. Mean corrected mortality in 1μg/ml Cry1Ac assays was 52.3% in 1997, 90.6% in 1998, and 97.9% in 1999. Mean corrected mortality in bioassays of 10 μg/ml was 94.5% in 1997, 99.8% in 1998, and 100% in 1999. Selection with Cry1Ac in the laboratory has produced from 1997 field collections a strain possessing 200 to 900-fold resistance to Cry1Ac. This resistant strain is capable of surviving on Bt cotton. We provide an overview of other components of the multi-agency collaboration to sustain efficacy of Bt cotton in Arizona. These include: 1) evaluation of the field performance of Bt cotton; 2) mapping and analysis of use of Bt and non-Bt cotton and compliance with refuge requirements; 3) effectiveness of internal versus external refuges and movement of pink bollworm moths from refuges; and 4) activities of the Arizona Bt Cotton Working Group to formulate and implement effective resistance management strategies.
212

Relative Susceptibility of Whiteflies to Danital® + Orthone® Over a 5-year Period

Castle, S. J., Ellsworth, P. C., Prabhaker, N., Toscano, N. C., Henneberry, T. J. January 2001 (has links)
As part of a program to assess differences in susceptibility to insecticides among regional populations of Bemisia tabaci, insecticide resistance monitoring was carried out at the Maricopa Agricultural Center from fall, 1995 through 1999. Monitoring efforts were concentrated on Danitol®+Orthene® following reports of control problems and documentation of resistance to this mixture in 1995. We were interested in the longer-term dynamics of resistance in light of radically altered treatment regimens beginning with the use of IGRs in 1996. Although the frequency of susceptible individuals to Danitol+Orthene tended to increase in the later years, highly resistant individuals were still present 5 years after the resistance episode of 1995. Whitefly adults collected from various insecticide treatment plots other than Danitol+Orthene were generally uniform in their responses from the time of initial whitefly infestation until defoliation. However, a dramatic shift in susceptibility occurred following a single application of Danitol+Orthene in 1997 and 1999. The increased frequency of resistant individuals following treatment suggests that any large scale return to the use of Danitol+Orthene could rapidly select for proportionally higher numbers of resistant whiteflies and perhaps reduced control in cotton fields.
213

Sustaining Arizona's Fragile Success in Whitefly Resistance Management

Li, Andrew Y.-S., Dennehy, Timothy J., Li, Sarah X.-H., Wigert, Monika E., Zaborac, Marci, Nichols, R. L. January 2001 (has links)
Arizona cotton experienced a severe crisis in 1995 stemming from resistance of whiteflies to synergized pyrethroid insecticides. The insect growth regulators (IGRs), Knack® (pyriproxyfen) and Applaud® (buprofezin), served a pivotal role in resolving this problem. Similarly, Admire® (imidacloprid), the first neonicotinoid insecticide to obtain registration in Arizona, has been the foundation of whitefly control in vegetables and melons. In this paper we provide an update regarding the susceptibility to key insecticides of whiteflies from Arizona cotton, melons, and greenhouses. Overall, whitefly control in Arizona cotton remained excellent in the 2000 season and there were no reported field failures. However, there was a significant decrease in susceptibility to Applaud of whiteflies collected from cotton. One collection from Eloy, Arizona, in 2000 had susceptibility to Applaud that was reduced 129-fold relative to a reference strain. Whiteflies resistant to Knack, detected for the first time in Arizona in 1999, were again detected in 2000 but at lower frequencies than in 1999. Though whiteflies resistant to Admire/Provado® continued to be found at specific locations, overall susceptibility to Admire/Provado in 2000 remained high in whitefly collections from cotton. The new neonicotinoid insecticides, thiamethoxam and acetamiprid, were similar in toxicity to Arizona whiteflies in laboratory bioassays and we confirmed the significant but relatively low-order cross-resistance we previously reported between these neonicotinoids and Admire/Provado. Arizona whiteflies continued to be relatively susceptible to mixtures of Danitol® (fenpropathrin) and Orthene® (acephate). Factors that could undermine the current success of whitefly resistance management in Arizona are discussed. These include: 1) more severe resistance to IGRs in whiteflies from cotton, stemming from increased IGR use within and outside of cotton; 2) resistance of vegetable, melon and greenhouse whiteflies to the various formulations of imidacloprid (Admire, Provado, Merit®, Marathon®); 3) the imminent registration of new neonicotinoid active ingredients in cotton, greenhouses and other Arizona crops.
214

Honeydew Production by Sweetpotato Whitefly Adults and Nymphs

Henneberry, T. J., Forlow Jech, L., de la Torre, T. January 2001 (has links)
We determined honeydew production by male and female sweetpotato whiteflies and the effects of temperature on honeydew production of each sex. We also determined honeydew production by each nymphal instar. Overall, adult SPW produced more honeydew than nymphs. Adult females produced more honeydew than males. The relative differences between honeydew production for males and females and between amounts adults produced compared with nymphs were consistent. However, honeydew production by adult and nymph individuals was subject to large degrees of variation.
215

Silverleaf Whitefly Studies: Effects of Trichome Density and Leaf Shape

Chu, C. C., Natwick, E. T., Henneberry, T. J., Nelson, D. R., Buckner, J. S., Freeman, T. P. January 2001 (has links)
We examined nine upland cotton cultivars in 2000 to determine silverleaf whitefly (SLW)-cotton leaf trichome relationships. The hairy leaf cultivar Stoneville 474 had significantly higher numbers of SLW eggs, nymphs and adults compared to eight other smooth leaf cotton cultivars. The top young leaves on main stem terminals had fewer SLW eggs, nymphs and adults, but higher numbers of trichomes compared with older leaves. Among the eight smooth leaf cultivars, the four okra leaf cultivars as a group had fewer SLW eggs, nymphs and adults compared with the four normal leaf cultivars.
216

Cost-Effective Lygus Managment in Arizona Cotton

Ellsworth, Peter C., Barkley, Virginia January 2001 (has links)
Timing sprays for maximum return on investment requires sampling and counting both Lygus adults and nymphs in a minimum of 100 sweeps. Once at least 15 total Lygus and 4 nymphs per 100 sweeps are detected, sprays for Lygus should be made. This '15/4' regime should protect yields, moderate spray frequency and costs, and maximize profit. Economic thresholds are impacted by the prevailing economic conditions such as lint value and costs of control; however in this case, the relationship that maximizes returns was not changed when varying these parameters well beyond market standards. A key finding of these studies is that aside from profits, yields plateau prior to the more aggressive treatment regimes. This phenomenon, where more protective approaches result in yield reductions, occurred in all three years of study (1997, 1999, 2000). This signals the importance of optimizing inputs so that sprays are made only when indicated by sampling and once the 15/4 level is reached, but no sooner. More aggressive approaches by definition cost more money to maintain, but also have some probability of lowering yields while risking secondary pest outbreaks. The specific mechanism for this yield decline is unknown at this time. At the other end of the spectrum, delaying action beyond the 15/8 action threshold risks economic yield loss and reductions in quality, especially color grade and micronaire. While this work definitively establishes the relative importance of Lygus nymphs to yield loss and to the need for action, the conditions under which these tests were carried out are limited to in-season infestations of Lygus. Further work is necessary to better quantify change in the action levels according to plant phenology and other plant-based factors (e.g., plant population, fruit retention, plantwater status, etc.). Early season infestations may respond differently to the action levels proposed, and it is expected that later season populations of Lygus pose far less damage potential when square populations and retention are very low.
217

Cultural Practices to Maintain Effective Natural Enemy/Pest Ratios

Watson, T. F., Jackson, E. B., Briggs, R. E., Fullerton, Dale, Carasso, F. M., Young, S. C., Pack, T. M. 02 1900 (has links)
No description available.
218

Biological Control Investigations

Bryan, D. E., Fye, R. E., Jackson, C. G., Patana, R., McAda, W. C., Neemann, E. G., Carranza, R. L. 02 1900 (has links)
No description available.
219

Monitoring Insect Parasites in a Cotton Pest Management Program

Werner, F. G., Mason, C. E. 02 1900 (has links)
No description available.
220

Biology and Control of Insects Affecting Cotton in Arizona

Watson, T. F., Fullerton, D. G., Young, Santford, Bertwell, R., Pack, T. M., Wright, R., Meinke, L. 02 1900 (has links)
No description available.

Page generated in 0.1121 seconds