• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • Tagged with
  • 10
  • 10
  • 9
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thyroglobulin gene mutations producing defective intracellular transport of thyroglobulin are associated with increased thyroidal type 2 iodothyronine deiodinase activity

Kanou, Yasuhiko, Hishinuma, Akira, Tsunekawa, Katsuhiko, Seki, Koji, Mizuno, Yutaka, Fujisawa, Haruki, Imai, Tsuneo, Miura, Yoshitaka, Nagasaka, Tetsuro, Yamada, Chizumi, Ieiri, Tamio, Murakami, Masami, Murata, Yoshiharu 04 1900 (has links)
No description available.
2

Cloning of a cDNA for Type II Iodothyronine 5' Deiodinase in the House Musk Shrew (Suncus murinus. Insectivora : Soricidae)

SUZUKI, Daisuke, AKEUCHI, Yoko, ODA, Sen-ichi, MURATA, Yoshiharu 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
3

Avaliação dos efeitos dos inibidores tirosino-quinase no metabolismo dos hormônios tireoidianos

Krause, Carla Daiana Demkio Volasco January 2017 (has links)
Introdução: Os inibidores tirosino-quinase (ITQs) constituem uma nova terapia molecular para o carcinoma medular da tireoide (CMT). O vandetanibe, um ITQ que atua contra os receptores VEGFR, EGFR e RET, inibe a transformação e o crescimento do tumor no CMT. No entanto, os ITQs têm importantes efeitos adversos, incluindo o hipotireoidismo. O aumento da expressão da iodotironina desiodase do tipo 3 (D3/DIO3), uma enzima chave na inativação dos hormônios da tireoide, pode ser um possível mecanismo de indução do hipotireoidismo por estas drogas. Objetivo: Investigar os efeitos dos inibidores tirosino-quinase na expressão da D3 em células derivadas do CMT. Métodos: Estudo experimental in vitro, utilizando linhagem de células humanas oriundas de CMT (células TT). As células foram cultivadas em meio específico e tratadas com diferentes doses do ITQ vandetanibe (0,25; 0,5 e 1μM) ou com DMSO. A proliferação celular foi determinada por contagem em câmara de Neubauer. A expressão do mRNA foi avaliada por meio de PCR em tempo real, a expressão proteica por meio de Western Blot e a atividade da D3 foi avaliada por meio da técnica de cromatografia em colunas de Sephadex LH-20. Resultados: A adição do vandetanibe ao meio de cultura causou diminuição do número de células e seu efeito foi tempo e dose dependente, apresentando uma redução máxima (77%) após 6 dias de tratamento na dose de 1μM. Como esperado, o tratamento com vandetanibe inibiu a fosforilação do ERK. Não foram observadas alterações significativas dos níveis de mRNA da DIO3 após 3 (0,02 vs. 0,02 vs. 0,01 vs. 0,01; P = 0,34) ou 6 dias (0,02 vs. 0,02 vs. 0,03 vs. 0,02; P = 0,33) de tratamento. Consequentemente, a expressão proteica da D3 não aumentou nos grupos tratados. No entanto, observou-se um aumento de 2 a 5 vezes na atividade da D3 após 3 dias de tratamento e um aumento de 1,5 a 2,15 vezes em 6 dias de tratamento. Conclusões: O tratamento com vandetanibe não foi associado com níveis aumentados de expressão do mRNA e da proteína da D3 em células derivadas de CMT, embora tenha sido observado um aumento na sua atividade enzimática. / Background: Tyrosine kinase inhibitors (TKIs) constitute a novel molecular therapy for medullary thyroid carcinoma (MTC). Vandetanib, a TKI that acts against the VEGFR, EGFR and RET receptors, inhibits tumor transformation and growth in MTC. However, TKIs have important adverse effects, including hypothyroidism. Increases in the expression of type 3 iodothyronine deiodinase (D3/DIO3), a key enzyme in the inactivation of thyroid hormones, may be a possible mechanism of induction of hypothyroidism by these drugs. Objective: To investigate the effects of vandetanib on D3 expression in MTC-derived cells. Methods: In vitro experimental study using human MTC cell line (TT cells). Cells were cultured in specific medium and treated with different doses of vandetanib (0.25, 0.5 and 1μM) or DMSO. Cell proliferation was determined by counting in Neubauer's chamber. Expression of mRNA was evaluated by real-time PCR, protein expression by Western Blot and D3 activity was evaluated by Sephadex LH-20 column chromatography. Results: The addition of vandetanib to the culture medium caused a time and dose-dependent decrease in the number of cells, with a maximum reduction (77%) after 6 days of treatment at 1μM dose. As expected, vandetanib treatment inhibited ERK phosphorylation. No significant changes in DIO3 mRNA levels were observed after 3 (0.02 vs. 0.02 vs. 0.01 vs. 0.01; P = 0.34) or 6 days (0.02 vs. 0.02 vs. 0.03 vs. 0.02; P = 0.33) of treatment. Accordingly, D3 protein expression did not increase in treated groups. However, we observed a 2 to 5-fold increase in D3 activity after 3 days of treatment and a 1.5 to 2.15-fold increase in 6 days of treatment. Conclusions: Treatment with vandetanib was not associated with increased DIO3 mRNA and D3 protein expression levels in MTC-derived cells, although an increase in enzyme activity has been observed.
4

Avaliação dos efeitos dos inibidores tirosino-quinase no metabolismo dos hormônios tireoidianos

Krause, Carla Daiana Demkio Volasco January 2017 (has links)
Introdução: Os inibidores tirosino-quinase (ITQs) constituem uma nova terapia molecular para o carcinoma medular da tireoide (CMT). O vandetanibe, um ITQ que atua contra os receptores VEGFR, EGFR e RET, inibe a transformação e o crescimento do tumor no CMT. No entanto, os ITQs têm importantes efeitos adversos, incluindo o hipotireoidismo. O aumento da expressão da iodotironina desiodase do tipo 3 (D3/DIO3), uma enzima chave na inativação dos hormônios da tireoide, pode ser um possível mecanismo de indução do hipotireoidismo por estas drogas. Objetivo: Investigar os efeitos dos inibidores tirosino-quinase na expressão da D3 em células derivadas do CMT. Métodos: Estudo experimental in vitro, utilizando linhagem de células humanas oriundas de CMT (células TT). As células foram cultivadas em meio específico e tratadas com diferentes doses do ITQ vandetanibe (0,25; 0,5 e 1μM) ou com DMSO. A proliferação celular foi determinada por contagem em câmara de Neubauer. A expressão do mRNA foi avaliada por meio de PCR em tempo real, a expressão proteica por meio de Western Blot e a atividade da D3 foi avaliada por meio da técnica de cromatografia em colunas de Sephadex LH-20. Resultados: A adição do vandetanibe ao meio de cultura causou diminuição do número de células e seu efeito foi tempo e dose dependente, apresentando uma redução máxima (77%) após 6 dias de tratamento na dose de 1μM. Como esperado, o tratamento com vandetanibe inibiu a fosforilação do ERK. Não foram observadas alterações significativas dos níveis de mRNA da DIO3 após 3 (0,02 vs. 0,02 vs. 0,01 vs. 0,01; P = 0,34) ou 6 dias (0,02 vs. 0,02 vs. 0,03 vs. 0,02; P = 0,33) de tratamento. Consequentemente, a expressão proteica da D3 não aumentou nos grupos tratados. No entanto, observou-se um aumento de 2 a 5 vezes na atividade da D3 após 3 dias de tratamento e um aumento de 1,5 a 2,15 vezes em 6 dias de tratamento. Conclusões: O tratamento com vandetanibe não foi associado com níveis aumentados de expressão do mRNA e da proteína da D3 em células derivadas de CMT, embora tenha sido observado um aumento na sua atividade enzimática. / Background: Tyrosine kinase inhibitors (TKIs) constitute a novel molecular therapy for medullary thyroid carcinoma (MTC). Vandetanib, a TKI that acts against the VEGFR, EGFR and RET receptors, inhibits tumor transformation and growth in MTC. However, TKIs have important adverse effects, including hypothyroidism. Increases in the expression of type 3 iodothyronine deiodinase (D3/DIO3), a key enzyme in the inactivation of thyroid hormones, may be a possible mechanism of induction of hypothyroidism by these drugs. Objective: To investigate the effects of vandetanib on D3 expression in MTC-derived cells. Methods: In vitro experimental study using human MTC cell line (TT cells). Cells were cultured in specific medium and treated with different doses of vandetanib (0.25, 0.5 and 1μM) or DMSO. Cell proliferation was determined by counting in Neubauer's chamber. Expression of mRNA was evaluated by real-time PCR, protein expression by Western Blot and D3 activity was evaluated by Sephadex LH-20 column chromatography. Results: The addition of vandetanib to the culture medium caused a time and dose-dependent decrease in the number of cells, with a maximum reduction (77%) after 6 days of treatment at 1μM dose. As expected, vandetanib treatment inhibited ERK phosphorylation. No significant changes in DIO3 mRNA levels were observed after 3 (0.02 vs. 0.02 vs. 0.01 vs. 0.01; P = 0.34) or 6 days (0.02 vs. 0.02 vs. 0.03 vs. 0.02; P = 0.33) of treatment. Accordingly, D3 protein expression did not increase in treated groups. However, we observed a 2 to 5-fold increase in D3 activity after 3 days of treatment and a 1.5 to 2.15-fold increase in 6 days of treatment. Conclusions: Treatment with vandetanib was not associated with increased DIO3 mRNA and D3 protein expression levels in MTC-derived cells, although an increase in enzyme activity has been observed.
5

Avaliação dos efeitos dos inibidores tirosino-quinase no metabolismo dos hormônios tireoidianos

Krause, Carla Daiana Demkio Volasco January 2017 (has links)
Introdução: Os inibidores tirosino-quinase (ITQs) constituem uma nova terapia molecular para o carcinoma medular da tireoide (CMT). O vandetanibe, um ITQ que atua contra os receptores VEGFR, EGFR e RET, inibe a transformação e o crescimento do tumor no CMT. No entanto, os ITQs têm importantes efeitos adversos, incluindo o hipotireoidismo. O aumento da expressão da iodotironina desiodase do tipo 3 (D3/DIO3), uma enzima chave na inativação dos hormônios da tireoide, pode ser um possível mecanismo de indução do hipotireoidismo por estas drogas. Objetivo: Investigar os efeitos dos inibidores tirosino-quinase na expressão da D3 em células derivadas do CMT. Métodos: Estudo experimental in vitro, utilizando linhagem de células humanas oriundas de CMT (células TT). As células foram cultivadas em meio específico e tratadas com diferentes doses do ITQ vandetanibe (0,25; 0,5 e 1μM) ou com DMSO. A proliferação celular foi determinada por contagem em câmara de Neubauer. A expressão do mRNA foi avaliada por meio de PCR em tempo real, a expressão proteica por meio de Western Blot e a atividade da D3 foi avaliada por meio da técnica de cromatografia em colunas de Sephadex LH-20. Resultados: A adição do vandetanibe ao meio de cultura causou diminuição do número de células e seu efeito foi tempo e dose dependente, apresentando uma redução máxima (77%) após 6 dias de tratamento na dose de 1μM. Como esperado, o tratamento com vandetanibe inibiu a fosforilação do ERK. Não foram observadas alterações significativas dos níveis de mRNA da DIO3 após 3 (0,02 vs. 0,02 vs. 0,01 vs. 0,01; P = 0,34) ou 6 dias (0,02 vs. 0,02 vs. 0,03 vs. 0,02; P = 0,33) de tratamento. Consequentemente, a expressão proteica da D3 não aumentou nos grupos tratados. No entanto, observou-se um aumento de 2 a 5 vezes na atividade da D3 após 3 dias de tratamento e um aumento de 1,5 a 2,15 vezes em 6 dias de tratamento. Conclusões: O tratamento com vandetanibe não foi associado com níveis aumentados de expressão do mRNA e da proteína da D3 em células derivadas de CMT, embora tenha sido observado um aumento na sua atividade enzimática. / Background: Tyrosine kinase inhibitors (TKIs) constitute a novel molecular therapy for medullary thyroid carcinoma (MTC). Vandetanib, a TKI that acts against the VEGFR, EGFR and RET receptors, inhibits tumor transformation and growth in MTC. However, TKIs have important adverse effects, including hypothyroidism. Increases in the expression of type 3 iodothyronine deiodinase (D3/DIO3), a key enzyme in the inactivation of thyroid hormones, may be a possible mechanism of induction of hypothyroidism by these drugs. Objective: To investigate the effects of vandetanib on D3 expression in MTC-derived cells. Methods: In vitro experimental study using human MTC cell line (TT cells). Cells were cultured in specific medium and treated with different doses of vandetanib (0.25, 0.5 and 1μM) or DMSO. Cell proliferation was determined by counting in Neubauer's chamber. Expression of mRNA was evaluated by real-time PCR, protein expression by Western Blot and D3 activity was evaluated by Sephadex LH-20 column chromatography. Results: The addition of vandetanib to the culture medium caused a time and dose-dependent decrease in the number of cells, with a maximum reduction (77%) after 6 days of treatment at 1μM dose. As expected, vandetanib treatment inhibited ERK phosphorylation. No significant changes in DIO3 mRNA levels were observed after 3 (0.02 vs. 0.02 vs. 0.01 vs. 0.01; P = 0.34) or 6 days (0.02 vs. 0.02 vs. 0.03 vs. 0.02; P = 0.33) of treatment. Accordingly, D3 protein expression did not increase in treated groups. However, we observed a 2 to 5-fold increase in D3 activity after 3 days of treatment and a 1.5 to 2.15-fold increase in 6 days of treatment. Conclusions: Treatment with vandetanib was not associated with increased DIO3 mRNA and D3 protein expression levels in MTC-derived cells, although an increase in enzyme activity has been observed.
6

Effects of growth hormone on thyroid function are mediated by type 2 iodothyronine deiodinase in humans / 成長ホルモンの甲状腺機能に対する作用はヒトにおいて2型甲状腺ホルモン脱ヨード酵素を介する

Yamauchi, Ichiro 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21640号 / 医博第4446号 / 新制||医||1034(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙折 晃史, 教授 大森 孝一, 教授 岩田 想 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
7

Deiodination of Thyroid Hormones by Iodothyronine Deiodinase Mimics

Manna, Debasish January 2013 (has links) (PDF)
Thyroxine is the main secretory hormone of thyroid gland and it is produced in thyroglobulin by thyroid peroxidase/hydrogen peroxide/iodide system. After biosynthesis and secretion of thyroxine, it undergoes multiple metabolic reactions. The most important metabolic pathway is the stepwise deiodination from the inner ring or outer ring. Removal of one of the outer ring or phenolic ring iodines of biologically less active T4, leads to the formation of 3,5,3'-triiodothyronine or T3, a compound which is biologically more active. On the other hand, removal of one of the inner ring or tyrosyl ring iodines gives 3,3',5'-triiodothyronine (3,3',5'-T3 or rT3) which is a biologically inactive thyroid hormone. Three enzymes involved in this activation and inactivation pathway of thyroid hormones are known as iodothyronine deiodinases (IDs), which are dimeric integral-membrane selenoproteins. Depending upon the sequence and substrate specificity, three iodothyronine deiodinase enzymes have been identified, iodothyronine deiodinase-1 (ID-1), iodothyronine deiodinase-2 (ID-2) and iodothyronine deiodinase-3 (ID-3). ID-1 can catalyze both inner ring and outer ring deiodination of thyroid hormones whereas, ID-2 is selective to the outer ring deiodination. The type-1 and -2 deiodinases (ID-1 and ID-2) produces the biologically active hormone 3,5,3′-triiodothyronine (T3). These two enzymes also convert 3,3′,5′-triiodothyronine (reverse T3 or rT3) to 3,3′-diiodothyronine (3,3′-T2) by outer-ring deiodination (Scheme 1). The type-3 deiodinase (ID-3) catalyzes the convertion of T4 to rT3 by an inner-ring deiodination pathway. Apart from deiodination, there are several alternate pathways of thyroid hormone metabolism, which include sulfate conjugation and glucoronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form thyroacetic acid and thyronamines, respectively. Glucoronidation and sulfate conjugation changes the physico-chemical properties of iodothyronines dramatically. This thesis consists of five chapters. The first chapter provides a general introduction of biosynthesis of thyroid hormones and followed by deiodination by three iodothyronine deiodinase enzyme. This chapter also provides an overview of thyroid hormone transport and different transport proteins and their mode of binding with thyroid hormones. Apart from this, this chapter also provides a brief overview on other thyroid hormone metabolites. In the second chapter of the thesis, initial attempts in the development of different iodothyronine deiodinase mimics have been discussed. Goto et al have shown that the sterically hindered selenol 1 converts the thyroxine derivative 3 (N¬butyrylthyroxine methyl ester) to the corresponding triiodo derivative 4 by an outer-ring deiodination (Scheme 2). Although the reaction was carried out in organic solvent and a relatively higher temperature (50 °C) and longer reaction time (7 days) were required for about 65% deiodination, this study also provides an experimental evidence for the formation of selenenyl iodide (2) in the deiodination of a thyroxine derivative by an organoselenol. However, only one iodine was removed from the outer ring of 3, no inner ring deiodination was detected (Scheme 2). Interestingly, when compound 5 was treated with selenol 1 under similar conditions, no deiodination was observed (Scheme 3). This leads to assumption that presence of free phenolic hydroxyl group is important for the deiodinase activity. Based on this experimental observation, they proposed a mechanism which involves an enol¬keto tautomerism of the phenolic hydroxyl group. In the case of thyroxine, the outer-ring can undergo enol-keto tautomerism, whereas due to lack of free hydroxyl group, the inner ring cannot undergo similar kind of tautomerism. The enol-keto tautomerism probably makes the outer ring iodines more reactive than the inner ring iodines of thyroxine. We have developed tthe first chemmical modell for the inneer ring deioddination of TT4 and T3 by type 33 deiodinase . We have shown that naphthyl-baseed selenol 6 bearing a thhiol group in the cloose proximitty to the sellenium act aas an excelleent model foor ID-3 by selectively deiodinatting T4 andd T3 to prodduce rT3 annd 3,3'-T2, rrespectively,, under physiological relevant conditions. When 2 equuivalent of ccompound 66 was emplooyed in the assay, an almost quuantitative cconversion oof T4 to rT3 was observeed within 300 hours and there was no indicaation of the fformation off T3 or 3,3'-TT2. When the selenol group was repplaced with a thiol group in compouund 7, the ddeiodinase activity wwas decreassed. On thee other handd, when thee thiol groupp was replaaced with selenol mmoiety in commpound 8, thhe deiodinasse activity drramatically iincreased wiithout any change iin the selecttivity. Comppounds 10 and 11 havving N-methhylamino grooup were found too be more aactive than the correspponding unssubstituted ccompounds 7 and 8, respectively. However, introduction of a secondary amine adjacent to the selenol moiety into the compound 9 significantly reduces the deiodinase activity. In the third chapter synthesis, deiodinase activity and mechanism of deiodination of a series of peri-substituted naphthalene derivatives is discussed. Iodobenzene was used as halogen bond donor for the DFT calculations. From the orbital analysis it is observed that there is perfect orbital symmetry match between the HOMO of compound 8 (selenolate form) and LUMO of iodobenzene. When the selenolate form of 1-selenonaphthol interacts with iodobenzene, a halogen bonded adduct is formed. The negative charge on the selenium center decreases as it donates electron pair to the σ* orbital of C–I bond in iodobenzene and as a consequence the positive charge on the iodine center decreases (Figure 1). Addition of iodobenzene to 1-selenonaphthol led to a significant downfield shift in 77Se NMR spectrum of 1-selenonaphthol and with an increase in the concentration of iodobenzene, more downfield shift in the signal was observed. Figure 1. The charges obtained from Natural Bond Orbital (NBO) analysis for the selenolate form of (a) 1-selenonaphthol (b) iodobenzene, (c) halogen-bonded adduct On the basis of experimental end theoretical data, a mechanism for the deiodination of T4 by compound 8 is proposed. According to the mechanism, the initial interaction of one of the selenol moieties with an iodine leads to the formation of halogen bond. The transfer of electron density from selenium to the σ* orbital of the C−I bond generates a σ-hole or partial positive charge on the selenium atom, which facilitates an interaction between the halogen bonded selenium atom and the free selenol (selenolate) moiety (intermediate 12). The selenium−selenium interaction (chalcogen bond) strengthens the halogen bond, leading to a heterolytic cleavage of the C−I bond. The protonation of the resulting carbanion leads to the formation of rT3. On the other hand, the formation of an Se−Se bond produces the diselenide 13 with elimination of iodide as HI. The reductive cleavage of the Se−Se bond in compound 13 regenerates the diselenol 8 (Figure 2). In the fourth chapter deiodination of sulfated thyroid hormones is discussed. Sulfate conjugation is an important step in in the irreversible inactivation of thyroid hormones. Sulfate conjugation of the phenolic hydroxyl group stimulates the inner ring deiodination of T4 and T3 but it blocks the outer ring deiodination of T4 by ID-1. The thyroxine sulfate (T4S) undergoes faster deiodination as compared to the parent thyroid hormone T4. Only ID-1 catalyzes the deiodination of sulfated thyroid hormones. In contrast, ID-2 and ID-3 do not accept T4S and/or T3S as substrate. We have shown that iodothyronine sulfates can be readily deiodinated by synthetic deiodinase model compound 8 and its derivatives. In contrast to the inner ring-selective deiodination of T4, the synthetic compounds loses the selectivity and mediate both inner and outer-ring deiodination of T4S and outer ring deiodination of rT3S. From this study, we have also proposed that the enol-keto tautomerism is probably not required for the outer ring deiodination and the strength of halogen bonding controls the regioselective deiodination by model compounds. In the fifth chapter, the mechanism of inhibition of iodothyronine deiodinases by PTU and IAA is discussed with the help of model compounds. In the model study, it has been observed that compound 8 does not form a stable Se-I intermediate (14), which is essential for the formation of Se-S covalent bond with PTU. As a consequence, the deiodination of T4 by compound 8 is not inhibited by PTU. This study supports the proposal that ID-3 does not follow a ping-pong bi-substrate pathway for deiodination and may not form a stable E-Se-I intermediate, which is responsible for the insensitivity of ID-3 towards PTU. The biphenyl based diselenol 15 reacts with IAA and iodoacetamide to form the corresponding carboxymethylated product 17. On the other hand, compound 8 does not undergo the expected carboxymethylation by IAA and iodoacetamide, but they readily deiodinate both IAA and iodoacetamide. Based on this model study, a possible model is proposed for the insensitivity of ID-3 towards IAA. Iopanoic acid (18) is a well known radiocontrast agent and is used as adjunctive therapy with PTU and CBZ for the treatment of thyrotoxicosis.[9] We show in this chapter that iopanoic acid undergoes monodeiodination by compound 8 under physiological relevant conditions. The deiodinated products (19 and 20) from iopanoic acid are characterized by NMR spectroscopy and single crystal X-ray crystallography. It is observed that after monodeiodination, the strength of halogen bonding decreases and therefore, the monodeiodinated products do not undergo further deiodination.
8

The Effect of Substituents and Solvents on the Deiodination Reactions of Thyroid Hormones by Iodothyronine Deiodinase Mimics

Raja, K January 2016 (has links) (PDF)
Thyroid hormones (THs; T4 and T3), secreted from thyroid gland, play an important role in human growth and development. T3 (3,5,3′-triiodothyronine) is the active hormone and the conversion of T4 (3,3′,5,5′-tetraiodothyronine) to T3 in cells is mediated by iodothyronine deiodinases enzymes (DIOs). DIOs are selenocysteine containing enzymes and are classified into three types (DIO1, DIO2 and DIO3). DIO1 catalyzes the outer-ring deiodination (ORD; T3 formation) and inner-ring deiodination (IRD; rT3 formation) reactions, involving in the activation (T4 to T3 conversion) and inactivation (T4 to rT3 conversion), respectively. DIO2 and DIO3 catalyse the ORD and IRD reactions, respectively. This homeostasis is regulated tightly and any deviation would lead to diseases like hyperthyroidism or hypothyroidism. Recently it is of interest to many research groups to develop iodothyronine deiodinase mimics and we have developed naphthalene-based peri-substituted thioselenol pair at 1,8-positions (1.25), which remove iodine selectively from inner-ring of T4. When selenium atom is substituted in place of sulfur (selenol-selenol pair; 1.26), the deiodination activity was ca. 90 times faster than with 1.25. This thesis deals with various aspects of the effect of substituents on the naphthalene-1,8-diselenol and solvent effect on the thyroid hormone deiodination by naphthalene-based iodothyronine deiodinase mimics. Figure 1. (A) Deiodination reactions by DIOs. (B) Chemical structure of 1.25 and 1.26. The thesis consists of five chapters. The first chapter provides a general overview about sialoproteins, thyroid hormone biosynthesis, thyroid hormone metabolism, halogen bonding, iodothyronine deiodinase mimics and proposed mechanisms for the deidoination of thyroid hormones. This chapter also introduces peri-naphthalene-1,8-diselenol (1.26), which is the key compound in this thesis and discusses about proposed mechanism for the deiodination of thyroxine involving co-operative halogen bonding and chalcogen bonding mechanism. Figure 2. (A) TH action. (B) Proposed mechanism for the deiodination of T4 by 1.26 involving cooperative halogen bonding and chalcogen bonding. Chapter 2 discusses about the synthesis, characterization and deiodination activity of a series of naphthalene-based peri-substituted-1,8-diselenols (Figure 3). These diselenols regioselectivity remove iodine from inner ring of thyroxine and other thyroid hormones, (T3 and 3, 5-T2). Substitution with different groups on the naphthalene ring did not change the regioselectivity of deiodination, indicating that the deiodination activity does not depend on the nature of substituents. Secondary or tertiary amine side chain group attached at the 2nd position of the naphthalene ring showed better activity. It is due to the secondary interaction, which facilitates the iodine removal. It was further confirmed with the substitutions at the 4th position of the ring to discriminate the possibility of electronic effect. The higher deiodination rate owing to the t-butyl group at second position of the ring also suggests that the steric effect may also play a role in the deiodination reaction (Figure 4). It is proposed that peri substituted naphthalene-1,8-diselenols remove iodine from thyroid hormones through halogen bonding-chalcogen bonding mechanism (Figure 2). The investigation of Se···Se bond distance from the crystal structures and through DFT calculation and NMR experiment showed that the stronger chalcogen bond could be the reason for the increase in the reactivity observed with substituted peri-naphthalene-1,8-diselenols. Figure 3. peri-substituted naphthalene-1,8-diselenols used for the study. Figure 4. Relative deiodinase activity of substituted-peri-naphthalene-1,8-diselenols with T4. In Chapter 3, we have discussed about the effect of chalcogen atom substitution in a series of deiodinase mimics on the deiodination of thyroid hormones. Moving from thiol-selenol pair (1.25) to selenol-selenol pair (1.26) in naphthalene based peri-substituted mimics, an increase in the activity was observed. In this chapter, we have shown that substituting with tellurium, as tellurium-thiol pair (3.3) and ditellurol (3.4) increases the reactivity of deiodination to several times and also regioselectivity of deiodination is changed from IRD in the case of 1.26 to both IRD and ORD for 3.3 and 3.4. The presence of two tellurol moieties (3.4) or a thiol-tellurol pair (3.3) can mediate sequential deiodination of T4, to produce all the possible thyroid hormone derivatives under physiologically relevant conditions (Figure 5). This study provided the first experimental evidence that the regioselectivity of the thyroid hormone deiodination is controlled by the nucleophilicity and the strength of halogen bond between the iodine and chalcogen atoms. Figure 5. (A) HPLC chromatograms of deiodination reaction of T4 with 3.3 and 3.4. (B) Chemical structure of 3.3 and 3.4. (C) Sequential deiodination reaction of T4 by 3.3 and 3.4. Chapter 4 describes the effect of alkyl conjugation at 4′-OH position of THs on the deiodination by iodothyronine mimics. In addition to the deiodination, iodothyronines undergo conjugation with sulfate and glucuronic acid group at 4′-hydroxyl position. Conjugation alters the physico-chemical properties of iodothyronines. For example, it is known that sulfate conjugation increases the rate of deiodination to a large extend. We have conjugated alkyl group at 4′-hydroxyl position of iodothyronines and investigated the deiodination reactions with reported peri-substituted naphthalene-1,8-diselenols. We observed that similar to sulfated thyroid hormones O-methylthyroxine also undergoes both phenolic and tyrosyl ring deiodination reactions and overall the rate of deiodination is increased at least by 5 times as compared with T4 under identical conditions. The phenolic iodine removal is favored by conjugation as compared to the tyrosyl ring iodine, which is similar to the observation made for T4S. Interestingly, when the acetamide group is conjugated at 4′-OH position, the regioselectivity of deiodination is changed exclusively to 5′-iodine. DFT calculations show that the positive potential on the iodine increase upon conjugation, which leads to stronger halogen bonding interaction with selenol, might be the reason for the change in the regioselectivity of deiodination. Figure 6. (A) HPLC chromatogram of deiodination reaction of T4(Me) with 1.26. (B) Initial rate comparison of T4 and T4(Me).(C) HPLC chromatogram of deiodination reaction of T4(AA) with 1.26 showing the formation of T3(AA) (ORD product). (D) Electron potential map of T4, T4(Me) and T4(AA) showing the increase in electro positive potential on 5′-iodine upon conjugation. Chapter 5 deals with the solvent effect on the deiodination reactions of THs by iodothyronine deiodinase mimics. As discussed in the earlier chapters, the deiodination reaction of thyroxine by naphthalene based-1,8-diselenols under physiological conditions produce, rT3 (IRD) as the only observable products. Surprisingly, when the deiodination reaction was performed in DMF or DMSO in the presence of 1.26, the regioselectivity of reaction was changed and the formation of both T3 (ORD) and rT3 was observed. In DMF or in DMSO, the deiodination reactivity of 1.26 was found to be 1000 fold higher than the reaction performed in phosphate buffer at pH 7.4. Figure 7. (A) HPLC chromatogram for the deiodination reaction of T4 in DMF by 1.26 showing both IRD and ORD. (B) A comparison of initial rate for the deiodination reactions of T4, T3 and 3,5-T2 in DMF and in DMSO by 1.26. (C) HPLC chromatograms for the deiodination reaction of T4 in DMF by 1.26 in the presence of TEMPO, showing the inhibition of deiodination (i) 0 mM TEMPO (ii) 10 mM of TEMPO (iii) 30 mM TEMPO. (D) HPLC chromatograms for the deiodination reaction of T4 in DMSO by 1.26 in the presence of TEMPO showing the inhibition of deiodination (i) 0 mM TEMPO (ii) 10 mM of TEMPO (iii) 30 mM TEMPO. 3,5-DIT was not denominated under physiological conditions, however, in DMF and in DMSO, 3,5-DIT was deiodinated by 2.4 to produce 3-MIT. We also observed that the control reactions in DMF or DMSO also showed a little deiodination activity. The very high reactivity observed in the presence of DMF or DMSO implied that the mechanism of denomination in these solvents may be different. It has been reported that DMSO or DMF radicals can be formed with small amounts of a base. Reaction mixture consisting of NaBH4 (for generating selenol from diselenide) and NaOH (T4 solution) may facilitate the radical formation. We also performed the reaction in the presence of TEMPO (free radical scavenger) and observed the inhibition of deiodination reaction. However, it is not clear whether the radical pathway could be one of the possible mechanisms of deiodination in these solvents by compounds 1.26 and 2.4. Further studies are required to propose a radical mechanism in different solvents such as DMF and DMSO.
9

Variação transcardíaca da concentração dos hormônios tireoidianos induzida por hipóxia miocárdica em pacientes submetidos à circulação extracorpórea / Transcardiac thyroid hormone variation induced by myocardial hypoxia in patients undergoing cardiopulmonary bypass.

Paolino, Bruno de Souza 17 July 2015 (has links)
As doenças cardíacas são a principal causa de morte em todo o mundo. Os hormônios tireoidianos desempenham um papel chave no metabolismo miocárdico e na fisiologia do sistema cardiovascular. A doença cardíaca aguda ou crônica promove uma queda sistêmica da concentração dos hormônios tireoidianos que se associa a um prognóstico pior da doença e aumento da sua mortalidade. Essa redução dos hormônios tireoidianos pode ocorrer na presença de função normal da tireóide, entidade clínica conhecida por síndrome da doença não-tireoidiana ou síndrome do enfermo eutireoideo (SEE). A participação do músculo cardíaco na patogênese da SEE é desconhecida. O entendimento do papel do músculo cardíaco na SEE é essencial para o tratamento das doenças cardíacas. Este estudo se propõe a avaliar a variação dos hormônios tireoidianos promovida pelo metabolismo cardíaco nos pacientes submetidos a cirurgias cardíacas com diferentes graus de isquemia miocárdica aguda, bem como estudar os principais mecanismos envolvidos nessa variação. Para avaliar a variação sistêmica de hormônios tireoideanos induzida pela cirurgia cardíaca com e sem circulação extracorpórea (CEC), 35 pacientes com estenose aórtica grave e doença coronariana submetidos à cirurgia com CEC e 12 pacientes submetidos à cirurgia de revascularização miocárdica sem CEC tiveram as concentrações sistêmicas dos hormônios tireoidianos dosadas no início do procedimento cirúrgico, imediatamente antes do clampeamento da aorta, 3 minutos após o desclampeamento da aorta, 6 e 24h após o procedimento. Além disso, a avaliação da participação isolada do coração foi feita pela dosagem dos hormônios tireoidianos na raiz da aorta e no seio coronário antes e após a isquemia miocárdica aguda induzida pelo clampeamento da aorta. Foram ainda quantificadas, em amostras do tecido miocárdico colhidas após a CEC, a expressão do gene das desiodades, enzimas responsáveis pela conversão dos hormônios tireoidianos nos tecidos periféricos. Essas medidas sanguíneas foram comparadas, bem como a expressão das desiodases presentes no músculo cardíaco, relacionando a sua expressão à variação transcardíaca dos hormônios tireoidianos. O estudo demonstrou uma queda significativa de 37,6% da concentração periférica de T3 associada a uma elevação de 261,6% do rT3 e manutenção das concentrações séricas de T4 livre ao longo do acompanhamento perioperatório nos três grupos. Os resultados não mostraram diferença da variação periférica dos hormônios tireoidianos entre os grupos. Nas amostras centrais, observou-se uma redução transcardíaca de 4,6% de T3 com incremento de 6,9% do rT3, sem alterações do T4 total no grupo estenose aórtica antes do início da CEC. Esse comportamento, no entanto, não foi visto nos pacientes com doença arterial coronariana antes da CEC. Após cerca de 3 minutos de reperfusão miocárdica depois do término da CEC, as variações de concentração de T3 e de rT3 entre a aorta e o seio coronário se perderam. A análise do mRNA do tecido miocárdico indicou expressão significativa da desiodase tipo III com ausência de expressão da desiodase tipo II nos três grupos, sem diferença significativa entre elas. Dessa forma, pode-se concluir que as cirurgias cardíacas com CEC ou sem CEC estão associadas ao desenvolvimento da SEE e que a intensidade desse distúrbio metabólico é similar nos três tipos de procedimento, independente da CEC. Em relação à contribuição do coração para este fenômeno, a expressão das enzimas relacionadas à síndrome no tecido cardíaco foi observada em todos os grupos estudados, mas somente o grupo estenose aórtica demonstrou variação hormonal transcardíaca pré-CEC, com a isquemia miocárdica possivelmente neutralizando esse efeito após a CEC. É possível que a isquemia crônica provavelmente devido à hipertrofia miocárdica, e não a isquemia aguda causada pela CEC, tenha uma capacidade de modificar as concentrações dos hormônios tireoidianos / Heart diseases are the main cause of death over the world and thyroid hormones are key elements in myocardial metabolism and cardiovascular physiology. In heart disease patients, low thyroid hormone levels lead to a worse prognosis and increase in the mortality, even with regular thyroid function, in a condition known as Euthyroid Sick Syndrome (ESS). There is no evidence that myocardial tissue is involved in ESS pathophysiology. The better understanding of heart role might be important to optimal treatment of heart disease. The current study aims to evaluate thyroid hormones variation induced by myocardial metabolism in patients submitted to several acute myocardial ischemic intensities and study the main mechanisms associated to this condition. To reach this objective, 35 stable severe aortic stenosis coronary artery disease submitted to in-pump cardiac surgery and 12 patients submitted to off-pump myocardial revascularization surgery were analyzed at the procedure beginning, before aortic clamping, 3 minutes after aortic cross-clamp release, six and 24h after procedure by measuring thyroid hormones concentration in systemic circulation. Therefore, cardiac metabolism was evaluated alone by the thyroid hormones concentration measurement in aortic root and coronary sinus just before and after myocardial ischemia induced by aortic clamping, as well the gene expression of thyroid hormones metabolism related enzyme in myocardial tissue samples. There was a significant 37.6% reduction in T3 systemic concentration, a 261.6% elevation in rT3 and no variation in free T4 systemic values during the observation time in three groups. However, there were no statistically differences among the groups. Central analysis showed a 4.6% significant reduction in T3 and 6.9% increase in rT3 in coronary sinus, compared to aortic root, in aortic stenosis group before cardiopulmonary bypass. The same behavior was not observed in coronary artery disease before aortic cross clamping. After cardiopulmonary bypass, no differences were seen in any group. However, Deiodinase Type III, which is responsible for the T3 concentration decrease, gene RNA-m expression was detected in all myocardial tissue biopsies, and the Deiodinase Type II, which produces T3 from T4, was absent in myocardial tissue during the heart surgery. In conclusion, in- or off-pump heart surgeries are associated to similar systemic ESS intensities and to ESS-enzyme related gene expressions in myocardial tissue. However, myocardial metabolism in aortic stenosis patients is able to change thyroid hormones concentrations, probably due to myocardial hypertrophy and chronic ischemia assault, which were no observed in coronary disease patients
10

Variação transcardíaca da concentração dos hormônios tireoidianos induzida por hipóxia miocárdica em pacientes submetidos à circulação extracorpórea / Transcardiac thyroid hormone variation induced by myocardial hypoxia in patients undergoing cardiopulmonary bypass.

Bruno de Souza Paolino 17 July 2015 (has links)
As doenças cardíacas são a principal causa de morte em todo o mundo. Os hormônios tireoidianos desempenham um papel chave no metabolismo miocárdico e na fisiologia do sistema cardiovascular. A doença cardíaca aguda ou crônica promove uma queda sistêmica da concentração dos hormônios tireoidianos que se associa a um prognóstico pior da doença e aumento da sua mortalidade. Essa redução dos hormônios tireoidianos pode ocorrer na presença de função normal da tireóide, entidade clínica conhecida por síndrome da doença não-tireoidiana ou síndrome do enfermo eutireoideo (SEE). A participação do músculo cardíaco na patogênese da SEE é desconhecida. O entendimento do papel do músculo cardíaco na SEE é essencial para o tratamento das doenças cardíacas. Este estudo se propõe a avaliar a variação dos hormônios tireoidianos promovida pelo metabolismo cardíaco nos pacientes submetidos a cirurgias cardíacas com diferentes graus de isquemia miocárdica aguda, bem como estudar os principais mecanismos envolvidos nessa variação. Para avaliar a variação sistêmica de hormônios tireoideanos induzida pela cirurgia cardíaca com e sem circulação extracorpórea (CEC), 35 pacientes com estenose aórtica grave e doença coronariana submetidos à cirurgia com CEC e 12 pacientes submetidos à cirurgia de revascularização miocárdica sem CEC tiveram as concentrações sistêmicas dos hormônios tireoidianos dosadas no início do procedimento cirúrgico, imediatamente antes do clampeamento da aorta, 3 minutos após o desclampeamento da aorta, 6 e 24h após o procedimento. Além disso, a avaliação da participação isolada do coração foi feita pela dosagem dos hormônios tireoidianos na raiz da aorta e no seio coronário antes e após a isquemia miocárdica aguda induzida pelo clampeamento da aorta. Foram ainda quantificadas, em amostras do tecido miocárdico colhidas após a CEC, a expressão do gene das desiodades, enzimas responsáveis pela conversão dos hormônios tireoidianos nos tecidos periféricos. Essas medidas sanguíneas foram comparadas, bem como a expressão das desiodases presentes no músculo cardíaco, relacionando a sua expressão à variação transcardíaca dos hormônios tireoidianos. O estudo demonstrou uma queda significativa de 37,6% da concentração periférica de T3 associada a uma elevação de 261,6% do rT3 e manutenção das concentrações séricas de T4 livre ao longo do acompanhamento perioperatório nos três grupos. Os resultados não mostraram diferença da variação periférica dos hormônios tireoidianos entre os grupos. Nas amostras centrais, observou-se uma redução transcardíaca de 4,6% de T3 com incremento de 6,9% do rT3, sem alterações do T4 total no grupo estenose aórtica antes do início da CEC. Esse comportamento, no entanto, não foi visto nos pacientes com doença arterial coronariana antes da CEC. Após cerca de 3 minutos de reperfusão miocárdica depois do término da CEC, as variações de concentração de T3 e de rT3 entre a aorta e o seio coronário se perderam. A análise do mRNA do tecido miocárdico indicou expressão significativa da desiodase tipo III com ausência de expressão da desiodase tipo II nos três grupos, sem diferença significativa entre elas. Dessa forma, pode-se concluir que as cirurgias cardíacas com CEC ou sem CEC estão associadas ao desenvolvimento da SEE e que a intensidade desse distúrbio metabólico é similar nos três tipos de procedimento, independente da CEC. Em relação à contribuição do coração para este fenômeno, a expressão das enzimas relacionadas à síndrome no tecido cardíaco foi observada em todos os grupos estudados, mas somente o grupo estenose aórtica demonstrou variação hormonal transcardíaca pré-CEC, com a isquemia miocárdica possivelmente neutralizando esse efeito após a CEC. É possível que a isquemia crônica provavelmente devido à hipertrofia miocárdica, e não a isquemia aguda causada pela CEC, tenha uma capacidade de modificar as concentrações dos hormônios tireoidianos / Heart diseases are the main cause of death over the world and thyroid hormones are key elements in myocardial metabolism and cardiovascular physiology. In heart disease patients, low thyroid hormone levels lead to a worse prognosis and increase in the mortality, even with regular thyroid function, in a condition known as Euthyroid Sick Syndrome (ESS). There is no evidence that myocardial tissue is involved in ESS pathophysiology. The better understanding of heart role might be important to optimal treatment of heart disease. The current study aims to evaluate thyroid hormones variation induced by myocardial metabolism in patients submitted to several acute myocardial ischemic intensities and study the main mechanisms associated to this condition. To reach this objective, 35 stable severe aortic stenosis coronary artery disease submitted to in-pump cardiac surgery and 12 patients submitted to off-pump myocardial revascularization surgery were analyzed at the procedure beginning, before aortic clamping, 3 minutes after aortic cross-clamp release, six and 24h after procedure by measuring thyroid hormones concentration in systemic circulation. Therefore, cardiac metabolism was evaluated alone by the thyroid hormones concentration measurement in aortic root and coronary sinus just before and after myocardial ischemia induced by aortic clamping, as well the gene expression of thyroid hormones metabolism related enzyme in myocardial tissue samples. There was a significant 37.6% reduction in T3 systemic concentration, a 261.6% elevation in rT3 and no variation in free T4 systemic values during the observation time in three groups. However, there were no statistically differences among the groups. Central analysis showed a 4.6% significant reduction in T3 and 6.9% increase in rT3 in coronary sinus, compared to aortic root, in aortic stenosis group before cardiopulmonary bypass. The same behavior was not observed in coronary artery disease before aortic cross clamping. After cardiopulmonary bypass, no differences were seen in any group. However, Deiodinase Type III, which is responsible for the T3 concentration decrease, gene RNA-m expression was detected in all myocardial tissue biopsies, and the Deiodinase Type II, which produces T3 from T4, was absent in myocardial tissue during the heart surgery. In conclusion, in- or off-pump heart surgeries are associated to similar systemic ESS intensities and to ESS-enzyme related gene expressions in myocardial tissue. However, myocardial metabolism in aortic stenosis patients is able to change thyroid hormones concentrations, probably due to myocardial hypertrophy and chronic ischemia assault, which were no observed in coronary disease patients

Page generated in 0.1079 seconds