• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing Magnetic Properties of Molecular Magnetic Materials: The Role of Single-Ion Anisotropy

Saber, Mohamed Rashad Mohamed 16 December 2013 (has links)
Considerable efforts are being devoted to designing enhanced molecular magnetic materials, in particular single molecule magnets (SMMs) that can meet the requirements for future technologies such as quantum computing and spintronics. A current trend in the field is enhancing the global anisotropy in metal complexes using single-ion anisotropy. The work in this dissertation is devoted to the synthesis and characterization of new building blocks of the highly anisotropic early transition metal ion V(III) with the aim of incorporating them into heterometallic molecular materials. The results underscore the importance of tuning the local coordination environments of metal ions in order to ensure enhanced single ion anisotropy. A family of mononuclear axially distorted vanadium (III) compounds, A[L_(3)VX_(3)] (3-9) (X = F, Cl or Br, A^(+) = Et_(4)N^(+), nBu_(4)N^(+) or PPN^(+) , L_(3) = Tp or Tp* (Tp = tris(-1-pyrazolyl)borohydride), Tp* = tris(3,5-dimethyl-1-pyrazolyl)borohydride)), and [Tp*V(DMF)_(3)](PF_(6))_(2) were studied. Replacement of the Tp ligand in 3 with the stronger π-donor Tp* results in a near doubling of the magnitude of the axial zero-field splitting parameter D_(z) (D_(z) = -16.0 cm^(-1) in 3, and -30.0 cm^(-1) in 4) as determined by magnetic measurements. Such findings support the idea that controlling the axial crystal field distortion is an excellent way to enhance single-ion anisotropy. High Field-High Frequency EPR measurements on 4 revealed an even higher D value, -40.0 cm^(-1). Interestingly, compound 4 exhibits evidence for an out-of-phase ac signal under dc field. In another effort, a new series of vanadium cyanide building blocks, PPN[V(acac)_(2)(CN)_(2)]∙PPNCl (13) (acac = acetylacetonate), A[V(L)(CN)_(2)] (A^(+) = Et_(4)N^(+), L = N,N'-Ethylenebis(salicylimine) (14), A = PPN^(+), L = N,N'-Ethylenebis(salicylimine) (15), L = N,N'-Phenylenebis(salicylimine) (16), and L = N,N'-Ethylenebis(2-methoxysalicylimine) (17)) were synthesized. Magnetic studies revealed moderate Dz values (-10.0, 5.89, 3.7, 4.05 and 4.36 cm^(-1) for 13-17 respectively). The first family of cyanide-bridged lanthanide containing molecules with a trigonal bipyramidal (TBP) geometry, (Et_(4)N)_(2)[(Re(triphos)(CN)_(3))_(2)(Ln(NO_(3))_(3))_(3)]-∙4CH_(3)CN (19-27 with Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Ho) were prepared using the [(triphos)Re(CN)_(3)]^(-) building block, results that add valuable information to our database of compounds with a TBP geometry. Magnetic studies revealed diverse magnetic responses including slow relaxation of the magnetization at zero field for 25 and 26 , an indication of SMM behavior.
2

Ferromagnetic resonance in films with growth induced anisotropy

Manuilov, Sergey January 2011 (has links)
This thesis discusses two different magnetic materials: epitaxial yttrium iron garnet (YIG) and heteromorphous CoFeB-SiO2 films. YIG films were grown by pulse laser deposition (PLD) techniques onto gadolinium gallium garnet (GGG) substrates of (111) and (001) crystal orientations. Using stoichiometric and overstoichiometric ablative targets, we developed two types of YIG submicron films. The films grown from overstoichiometric targets have magnetic properties slightly different from standard liquid phase epitaxy (LPE) YIGs. They also demonstrate good substrate matching and approximately 6% nonstoichiometry. In contrary, films grown from stoichiometric targets posses surprisingly high values of uniaxial anisotropy, meanwhile cubic anisotropy is reduced several times. These films also reveal strong lattice distortions and nonstoichiometry around 17%. Employing Weiss molecular field theory and single-ion anisotropy model we determined the preferential occupancy of the octahedral [a] positions in the YIG cubic lattices by Fe3+ vacancies. The vacancies were found to be preferentially oriented along the growth direction perpendicular to the film surface. We called this effect “deformation blockade”. Different magnetostatic surface wave (MSSW) filters were also demonstrated. The filters employ high uniaxial anisotropy in YIG submicron films with magnetic losses ΔH ~ 1 Oe.  Heteromorphous CoFeB-SiO2 films were deposited onto glass substrates employing carrousel magnetron sputtering. This novel technique allows amorphous films fabrication with record high in-plane anisotropy. The induced anisotropy fields here are approximately dozen times greater the values achieved using conventional growth technique when external bias field is applied during deposition process. Interesting observations were made studying CoFeB-SiO2 magnetization dynamics in the wide frequency range from 500 kHz up to 15 GHz.  Two different anomalies of the magnetic susceptibility were found at the field of in-plane anisotropy Hp and critical field Hcr (0 < Hcr < Hp). We explained the anomalies appearance by sequence of the domain walls transformations so that Néel-Bloch-Néel domain wall transition stands for the instability at H = ±Hcr and transition from the uniformly magnetized state to the domain state with Néel domain wall and vice versa is responsible for the instability at H = ±Hp. / QC 20111122

Page generated in 0.0746 seconds