• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 11
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 72
  • 20
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Interlaboratory comparisons of fast atom bombardment and liquid secondary ion mass spectra of diquaternary pyridinium oxime salts

Kunkel, Gary John 12 1900 (has links)
No description available.
32

The effects of energetic particles bombardment on the properties of ion plated chromium thin films

Hsieh, Jang-Hsing 05 1900 (has links)
No description available.
33

Ion sputtering from organic liquid matrices bombarded by keV metal ions

Yen, Ten-Yang 06 October 1992 (has links)
Graduation date: 1993
34

Acceptance calculations for a charge breeder based on an Electron Beam Ion Trap

Gavartin, Emanuel. January 2008 (has links)
Thesis (M.S.)--Michigan State University. Dept. of Physics, 2008. / Adviser, Prof. Georg Bollen"--Acknowledgments. Title from PDF t.p. (viewed on Aug. 4, 2009) Includes bibliographical references (p. 71-72). Also issued in print.
35

Ion-materials interactions and their application

Whitlow, Harry James January 1998 (has links)
No description available.
36

Ion beams for radiocarbon dating : the production, transport and measurement of C ̄beams for high energy mass spectrometry

White, Nicholas Robin January 1981 (has links)
No description available.
37

The effects of ion bombardment on the chemical reactivity of GaAs(100)

Epp, June Miriam January 1989 (has links)
The effects of ion bombardment on the chemical reactivity of GaAs(100) were investigated by X-ray photoelectron spectroscopy. The enhancement in reactivity was shown to be related to the energy and mass of the bombarding ion. The oxidation results were compared to chemically cleaned (1:1 HCI(conc)/H₂O) and IHT (simultaneous ion/heat treatment) prepared GaAs(100). Before ion bombardment, GaAs(100) was chemically cleaned with 1:1 HCI(conc)/H₂O to remove surface oxides. Chemically cleaned GaAs was bombarded with 0.5-3 KeV Ar⁺ ions (fluences = 10¹⁶-10¹⁷ ions/cm²) and with 3 KeV Xe⁺, Ar⁺, ²⁰Ne⁺, and ³He⁺ ions (fluence =10¹⁷ ions/cm²) to investigate the effect of ion bombardment energy and mass on chemical reactivity. Ion bombardment results in the preferential sputtering of As and the amount of As depletion is dependent upon ion bombardment energy and mass. Following chemical cleaning and ion bombardment, GaAs was exposed to 10⁷-10¹³ L O2, 10⁹-10¹³ L H₂O,10⁶-10⁸ L NO, and 10⁷-10¹¹ L N₂O (1 Langmuir (L) = 1.3x10⁻⁴ Pa•sec). Chemically cleaned GaAs produced equivalent amounts of Ga₂O₃ and As₂O₃ upon O₂ exposure. Oxygen exposure of ion bombarded GaAs resulted in the formation of Ga₂O₃, As₂O₃, and As₂O₅. Nitric oxide exposure produced Ga₂O₃ and As₂O₃, and N₂O exposure produced only Ga₂O₃. Gallium oxide was preferentially formed for ion bombarded material and the relative amount of Ga₂O₃ increased with increasing ion energy. 3 KeV Xe⁺ ion-bombarded GaAs exhibited the greatest reactivity to O₂ and NO. Exposure of ion bombarded GaAs to NO produced the greatest amounts of Ga₂O₃. Ion bombarded GaAs was the least reactive to N₂O. Exposure of ion bombarded GaAs to H₂O resulted in the formation of GaOOH and Ga(OH)₃, with Ga(OH)₃ formation occurring only on 2 KeV Ar⁺ and 3 KeV Ar⁺ and Xe⁺ ion-bombarded material at exposures above 10¹⁰ L. It was shown that defects were responsible for the increased reactivity and that preferential formation of Ga₂O₃ on ion bombarded material was not determined by the Ga/As surface ratio. Exposing IHT prepared GaAs to O₂ produced equivalent amounts of Ga₂O₃ and As₂O₃ when the Ga/As ratio was 1.23±0.07. The damage caused by ion bombardment was investigated by optical reflectivity in the visible and near-ultraviolet region (1.6-5.6 eV), Raman spectroscopy, and capacitance-voltage measurements. Ion bombardment forms a damaged layer that is amorphous. The depth of damage is proportional to the energy of the bombarding ion and inversely proportional to the mass of the bombarding ion. The shallow damage depth for 3 KeV Xe⁺ ion-bombarded GaAs offers some explanation for increased chemical reactivity. The increased reactivity of ion bombarded GaAs with O₂ and NO is attributed to surface defects (broken surface bonds). It is suggested that these broken bonds are in the form of singly occupied dangling bonds. A model for the surface and possible reaction pathways for O₂ and NO reactions are discussed. / Ph. D.
38

An investigation of transmission electron microscopy specimen artifacts resulting from focused ion beam and conventional preparation techniques

Shannon, Carrie Urbanik 01 April 2000 (has links)
No description available.
39

K-Shell Ionization Cross Sections of Selected Elements from Fe to As for Proton Bombardment from 0.5 to 2.0 MeV

Lear, Richard Dean 12 1900 (has links)
The problem with which this investigation is concerned is that of making experimental measurements of proton-induced K-shell x-ray production cross sections and to study the dependence of these cross sections upon the energy of the incident proton. The measurements were made by detection of the characteristic x-rays emitted as a consequence of the ionization of the K-shell of the atom. The method for relating this characteristic x-ray emission to the x-ray production cross section is discussed in this work.
40

L X-Ray Production in the Rare Earths by 0.33-2.66-MeV/amu Carbon- and 0.50-2.25-MeV/amu Oxygen-Ion Bombardment

Pepper, George H. 08 1900 (has links)
Experimentally measured L-shell x-ray production cross sections are presented for 8-36-MeV oxygen-ion bombardment of Ce, Pr, Sm, Eu, Dy, and Ho; for 4-32-MeV carbon-ion bombardment of La and Yb; for 6-32-MeV carbon-ion bombardment of Pr, Nd, Sm, and Dy; and for ll-29-MeV carbon-ion bombardment of Ce, Eu, Gd, and Ho. Theoretical predictions via the plane wave Born approximation (PWBA) with corrections for increased binding of target electrons and Coulomb deflection of the incident projectile tend to underestimate the experimental data; and this underestimation tends to get worse at the low- and high-energy ends of the range of energies used in this work.

Page generated in 0.0813 seconds