• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Micro-Retarding Potential Analyzer for High-Density Flowing Plasmas

Partridge, James M 10 November 2005 (has links)
"The development of Retarding Potential Analyzers (RPAs) capable of measuring high-density stationary and flowing plasmas is presented. These new plasma diagnostics address the limitations of existing RPAs and can operate in plasmas with electron densities in excess of 1x1018 m-3. Such plasmas can be produced by high-powered Hall Thrusters, Pulsed Plasma Thrusters (PPTs), and other plasma sources. The Single-Channel micro-Retarding Potential Analyzer (SC-microRPA) developed has a minimum channel diameter of 200 microns, electrode spacing on the sub-millimeter scale and can operate in plasmas with densities of up to 1x1017 m-3. The electrode series consists of 100 micron thick molybdenum electrodes and Teflon insulating spacers. The alignment process of the channel, as well as the design and fabrication of the stainless steel outer housing, the Delrin insulating tube, and all other microRPA components are detailed. To expand the applicability of the SC-microRPA to densities above 1x1018 m-3 a low transparency Microchannel Plate (MCP) has been incorporated in the design of a Multi-Channel micro-Retarding Potential Analyzer (MC-microRPA). The current collection theory for the SC-microRPA and the MC-microRPA is also derived. The theory is applicable to microRPAs with arbitrary channel length to diameter ratios and accounts for the reduction of ion flux due to the microchannel plate in the case of the MC-microRPA, due to absorption of ions by channel walls, and due to the applied potential. Current-voltage curves are obtained for incoming plasma flows that range from near-stationary to hypersonic, with temperatures in the range of 0.1 to 10 eV, and densities in the range of 1x1015 m-3 to 1x1021 m-3. The SC-microRPA current collection theory is validated by comparisons with the classical RPA theory and particle-in-cell simulations. Determination of unknown plasma properties is based on a fuzzy-logic approach that uses the generated current-voltage curves as lookup tables."
2

Ion Energy Measurements in Plasma Immersion Ion Implantation

Allan, Scott Young January 2009 (has links)
Doctor of Philosophy (PhD) / This thesis investigates ion energy distributions (IEDs) during plasma immersion ion implantation (PIII). PIII is a surface modification technique where an object is placed in a plasma and pulse biased with large negative voltages. The energy distribution of implanted ions is important in determining the extent of surface modifications. IED measurements were made during PIII using a pulse biased retarding field energy analyser (RFEA) in a capacitive RF plasma. Experimental results were compared with those obtained from a two dimensional numerical simulation to help explain the origins of features in the IEDs. Time resolved IED measurements were made during PIII of metal and insulator materials and investigated the effects of the use of a metal mesh over the surface and the effects of insulator surface charging. When the pulse was applied to the RFEA, the ion flux rapidly increased above the pulse-off value and then slowly decreased during the pulse. The ion density during the pulse decreased below values measured when no pulse was applied to the RFEA. This indicates that the depletion of ions by the pulsed RFEA is greater than the generation of ions in the plasma. IEDs measured during pulse biasing showed a peak close to the maximum sheath potential energy and a spread of ions with energies between zero and the maximum ion energy. Simulations showed that the peak is produced by ions from the sheath edge directly above the RFEA inlet and that the spread of ions is produced by ions which collide in the sheath and/or arrive at the RFEA with trajectories not perpendicular to the RFEA front surface. The RFEA discriminates ions based only on the component of their velocity perpendicular to the RFEA front surface. To minimise the effects of surface charging during PIII of an insulator, a metal mesh can be placed over the insulator and pulse biased together with the object. Measurements were made with metal mesh cylinders fixed to the metal RFEA front surface. The use of a mesh gave a larger ion flux compared to the use of no mesh. The larger ion flux is attributed to the larger plasma-sheath surface area around the mesh. The measured IEDs showed a low, medium and high energy peak. Simulation results show that the high energy peak is produced by ions from the sheath above the mesh top. The low energy peak is produced by ions trapped by the space charge potential hump which forms inside the mesh. The medium energy peak is produced by ions from the sheath above the mesh corners. Simulations showed that the IED is dependent on measurement position under the mesh. To investigate the effects of insulator surface charging during PIII, IED measurements were made through an orifice cut into a Mylar insulator on the RFEA front surface. With no mesh, during the pulse, an increasing number of lower energy ions were measured. Simulation results show that this is due to the increase in the curvature of the sheath over the orifice region as the insulator potential increases due to surface charging. The surface charging observed at the insulator would reduce the average energy of ions implanted into the insulator during the pulse. Compared to the case with no mesh, the use of a mesh increases the total ion flux and the ion flux during the early stages of the pulse but does not eliminate surface charging. During the pulse, compared to the no mesh case, a larger number of lower energy ions are measured. Simulation results show that this is caused by the potential in the mesh region which affects the trajectories of ions from the sheaths above the mesh top and corners and results in more ions being measured with trajectories less than ninety degrees to the RFEA front surface.
3

Ion Energy Measurements in Plasma Immersion Ion Implantation

Allan, Scott Young January 2009 (has links)
Doctor of Philosophy (PhD) / This thesis investigates ion energy distributions (IEDs) during plasma immersion ion implantation (PIII). PIII is a surface modification technique where an object is placed in a plasma and pulse biased with large negative voltages. The energy distribution of implanted ions is important in determining the extent of surface modifications. IED measurements were made during PIII using a pulse biased retarding field energy analyser (RFEA) in a capacitive RF plasma. Experimental results were compared with those obtained from a two dimensional numerical simulation to help explain the origins of features in the IEDs. Time resolved IED measurements were made during PIII of metal and insulator materials and investigated the effects of the use of a metal mesh over the surface and the effects of insulator surface charging. When the pulse was applied to the RFEA, the ion flux rapidly increased above the pulse-off value and then slowly decreased during the pulse. The ion density during the pulse decreased below values measured when no pulse was applied to the RFEA. This indicates that the depletion of ions by the pulsed RFEA is greater than the generation of ions in the plasma. IEDs measured during pulse biasing showed a peak close to the maximum sheath potential energy and a spread of ions with energies between zero and the maximum ion energy. Simulations showed that the peak is produced by ions from the sheath edge directly above the RFEA inlet and that the spread of ions is produced by ions which collide in the sheath and/or arrive at the RFEA with trajectories not perpendicular to the RFEA front surface. The RFEA discriminates ions based only on the component of their velocity perpendicular to the RFEA front surface. To minimise the effects of surface charging during PIII of an insulator, a metal mesh can be placed over the insulator and pulse biased together with the object. Measurements were made with metal mesh cylinders fixed to the metal RFEA front surface. The use of a mesh gave a larger ion flux compared to the use of no mesh. The larger ion flux is attributed to the larger plasma-sheath surface area around the mesh. The measured IEDs showed a low, medium and high energy peak. Simulation results show that the high energy peak is produced by ions from the sheath above the mesh top. The low energy peak is produced by ions trapped by the space charge potential hump which forms inside the mesh. The medium energy peak is produced by ions from the sheath above the mesh corners. Simulations showed that the IED is dependent on measurement position under the mesh. To investigate the effects of insulator surface charging during PIII, IED measurements were made through an orifice cut into a Mylar insulator on the RFEA front surface. With no mesh, during the pulse, an increasing number of lower energy ions were measured. Simulation results show that this is due to the increase in the curvature of the sheath over the orifice region as the insulator potential increases due to surface charging. The surface charging observed at the insulator would reduce the average energy of ions implanted into the insulator during the pulse. Compared to the case with no mesh, the use of a mesh increases the total ion flux and the ion flux during the early stages of the pulse but does not eliminate surface charging. During the pulse, compared to the no mesh case, a larger number of lower energy ions are measured. Simulation results show that this is caused by the potential in the mesh region which affects the trajectories of ions from the sheaths above the mesh top and corners and results in more ions being measured with trajectories less than ninety degrees to the RFEA front surface.
4

Plasma Characteristics of the DC Saddle Field Glow Discharge

Leong, Keith R. 10 January 2014 (has links)
Plasma enhanced chemical vapor deposition systems are massively deployed to grow numerous thin film coatings including hydrogenated amorphous silicon. A new deposition chamber was designed, procured, and constructed to investigate the plasma properties of a 100% silane (SiH4) glow discharge with varying chamber pressure and inter-electrode spacing. A Hiden EQP1000 ion mass spectrometer sampled the plasma from the substrates point of view. Ion energy distributions were obtained using four different excitation sources +DC, –DC, radio frequency (at 13.56 MHz), and the DC Saddle Field (DCSF) in the tetrode configuration. The shape of the ion energy distributions was constant for the capacitively coupled +DC, –DC, and rf (at higher pressures of 75 and 160 mTorr) glow discharges. The shape of the ion energy distributions for the DCSF plasma exhibited a double peak or saddle structure analogous to radio frequency plasmas. The width between the peaks (peak separation) was controlled by the pressure and the semi-transparent cathode to semi-transparent anode distance. Ion energy distributions from the DCSF plasma concurred with rf and +DC ion energy distributions at specific pressures and inter-electrode distances. This result demonstrates the versatility of the DCSF glow discharge system. Moreover, control of the peak separation is modeled to be iii equivalent to controlling the critical ratio (ion transit time in the sheath to the electron oscillating period), and/or the inferred electron oscillating sheath potential. The DCSF possesses a fusion of rf and +DC methods. The long high energy tail or constant background are indicative of a +DC high voltage sheath in which there is an increasing fraction of collisionless ions as the anode-cathode distance increases. These collisionless ions are provided by the oscillating electrons (or rf nature) of the DCSF method. Higher order silane (silicon containing) ions increase in relative intensity with increasing inter-electrode spacing for the +DC, –DC, and rf plasmas. These higher order silane ions are also detected in the DCSF plasma, and can be reduced at either lower pressure or lower cathode to anode or cathode to substrate distances.
5

Plasma Characteristics of the DC Saddle Field Glow Discharge

Leong, Keith R. 10 January 2014 (has links)
Plasma enhanced chemical vapor deposition systems are massively deployed to grow numerous thin film coatings including hydrogenated amorphous silicon. A new deposition chamber was designed, procured, and constructed to investigate the plasma properties of a 100% silane (SiH4) glow discharge with varying chamber pressure and inter-electrode spacing. A Hiden EQP1000 ion mass spectrometer sampled the plasma from the substrates point of view. Ion energy distributions were obtained using four different excitation sources +DC, –DC, radio frequency (at 13.56 MHz), and the DC Saddle Field (DCSF) in the tetrode configuration. The shape of the ion energy distributions was constant for the capacitively coupled +DC, –DC, and rf (at higher pressures of 75 and 160 mTorr) glow discharges. The shape of the ion energy distributions for the DCSF plasma exhibited a double peak or saddle structure analogous to radio frequency plasmas. The width between the peaks (peak separation) was controlled by the pressure and the semi-transparent cathode to semi-transparent anode distance. Ion energy distributions from the DCSF plasma concurred with rf and +DC ion energy distributions at specific pressures and inter-electrode distances. This result demonstrates the versatility of the DCSF glow discharge system. Moreover, control of the peak separation is modeled to be iii equivalent to controlling the critical ratio (ion transit time in the sheath to the electron oscillating period), and/or the inferred electron oscillating sheath potential. The DCSF possesses a fusion of rf and +DC methods. The long high energy tail or constant background are indicative of a +DC high voltage sheath in which there is an increasing fraction of collisionless ions as the anode-cathode distance increases. These collisionless ions are provided by the oscillating electrons (or rf nature) of the DCSF method. Higher order silane (silicon containing) ions increase in relative intensity with increasing inter-electrode spacing for the +DC, –DC, and rf plasmas. These higher order silane ions are also detected in the DCSF plasma, and can be reduced at either lower pressure or lower cathode to anode or cathode to substrate distances.

Page generated in 0.0884 seconds