• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental Studies on the Extraction of Rare Earth Elements from Ion Adsorption Clays

Onel, Oznur 12 October 2023 (has links)
Rare earth elements (REEs) are critically important for high-tech, renewable energy and defense industries. However, rare earth minerals (REMs) are stable compounds, requiring aggressive conditions to decompose them for their extraction and use. One exception is the ion-adsorption clays (IACs) that are mined in South China. They were formed in nature via the adsorption of the REE ions on clay minerals; therefore, they can be readily extracted into solution under mild conditions using the ion-exchange leaching process using (NH4)2SO4 as lixiviant. It also happens that IACs are the largest source of the heavy rare earth elements (HREEs) that are critical, especially for the defense industry. At present, more than 80% of the HREEs are produced commercially from the IACs mined in Southeast Asia. The objective of the present research was to study the fundamental mechanisms involved in the formation and processing of IACs using the ion-change leaching process. The first part of the project was the synthesis of IACs by contacting kaolinite samples with known concentrations of rare earth chloride (REECl3) solutions at different pHs and analyzing the synthetic IACs for XPS studies. It was found that the REE adsorption on kaolinite stays constant in acidic pHs. At pH 7 and above, adsorption density increases sharply, possibly due to the formation of REE(OH)3 and/or REE(OOH). The IACs formed under these conditions responded well to the ion-exchange leaching process by reducing the pH to below 7. In the second part of the study, the effect of iron (Fe3+) species co-adsorbing with REEs on the kaolinite surface was studied. Unlike the colloidal phases of IACs formed at pH > 7, the synthetic IACs formed in the presence of iron did not respond to the ion-exchange leaching process using (NH4)2SO4 as lixiviant. This problem has been solved by subjecting the synthetic IACs to a reducing condition to convert the Fe3+ to soluble Fe2+ species at pH < 7. The driving force for the standard exchange leaching process is the large differences between the hydration enthalpies of the Ln3+ ions that are in the range of -3,400 kJ/mole and that of the NH4+ ions (-320 kJ/mole). In the present work, alkylammonium ions (CnH2nNH4+) of varying chain lengths were used as novel lixiviants and obtained excellent results. Since these are surface active species, their concentrations in the vicinity of the clay minerals that are negatively charged would be substantially higher than in the bulk. As a result, it was possible to achieve the same level of leaching efficiencies as obtained using ammonium sulfate at approximately ten times lower reagent dosages. One of the problems associated with extracting REEs from coal-based clays is that the REE concentrations are typically in the range of 300 to 600 ppm, which makes it difficult to extract the critical materials economically using ion-exchange leaching and other processes. As a means to overcome this issue, the REE-bearing particles, including IACs and REMs, were liberated by blunging and subsequently upgraded using the hydrophobic-hydrophilic separation (HHS) process. The results showed that blunging outperformed grinding in liberating the REE-bearing particles from the clayey materials in coal. It was shown that one can improve blunging by increasing the disjoining in the thin liquid films present between clay and other minerals by controlling the double-layer (EDL) forces. These findings should enhance our understanding of the fundamental mechanisms involved in upgrading critical materials and thereby increase the economic viability of REE recovery from coal-based materials. / Doctor of Philosophy / Rare earth elements (REEs) play a vital role in numerous modern industries, advanced technological applications, and defense industries. The United States accounts for about 15 % of the global demand for REEs. However, the country heavily relies on imported Chinese raw materials, creating vulnerability in the U.S. supply chain. REEs are rarely found in concentrations suitable for mining, and in certain cases, extracting and processing conventional REE deposits come with significant environmental hazards. The limited availability of rare earth elements (REEs) raises concerns regarding their production despite their critical role in high-tech industries. Consequently, various federal agencies and private enterprises have recently attempted to identify promising alternative resources due to these complex challenges. REEs have been found in several major coal basins and are evidenced to be associated with coal byproducts such as kaolinite clays–one of the major host materials of IACs. This research investigates the recovery of rare earth elements (REEs) from clayey materials through various processes. Emphasis is placed on the synthesis of ion-adsorption clays from kaolinite, and the factors influencing the ion-exchange leaching process are being studied. Furthermore, the impact of iron co-adsorption on REE binding to kaolinite is being examined, and reductive leaching is being evaluated as a means to overcome the hindrance caused by iron passivating layers. Novel lixiviants are being tested as alternatives to conventional lixiviant ((NH4)2SO4) for REE extraction. The application of hydrophobic-hydrophilic separation techniques for extracting REE-bearing particles from coal clay samples is also being explored, with a comparison made between grinding and blunging processes. Overall, valuable insights into the efficient recovery of REEs from clay minerals are being obtained, contributing to the development of cost-effective and novel approaches for their extraction.
2

Rare Earth Extraction from Clayey Waste Materials by Alkali Pretreatment

Liu, Wei 12 April 2023 (has links)
Doctor of Philosophy / Rare earth elements (REEs) play a significant role in industrial production. Currently, much effort has been made to recover REEs from clays isolated from mining wastes such as coal byproducts. However, the concentrations of REEs in those clayey waste materials are too low, and they are not amenable to leaching even using strong acids. The developed extraction techniques usually need to be carried out at elevated temperatures (e.g., >100 oC) and consume substantial amounts of chemicals, which are not cost-effective and environmentally friendly. Given the issues, this study proposed a novel leaching technology that can recover REEs from clayey waste materials under mild conditions (<100 oC). Firstly, to simulate the recovery of REEs from coal-based clay materials, a monazite sample was pretreated with caustic soda (i.e., NaOH) at 80 oC for 24 h to convert the difficult-to-dissolve REEs (i.e., rare earth phosphate) into readily soluble forms (rare earth hydroxide), after which they were dissolved in 0.5 M ammonium sulfate solution at pH 4 and room temperature. A conceptual model was developed to explain the leaching mechanism of ammonium sulfate, which was found to be an ion exchange process. The proposed leaching process was also used to extract REEs from clay materials isolated from coal-based clay samples. A chelating ligand named ethylenediaminetetraacetic acid (i.e., EDTA) was added to the dilute NaOH solutions to reduce the alkali consumption during NaOH pretreatment. It was found that the presence of EDTA can improve the performance of NaOH pretreatment. Additionally, the content of REEs in a kaolinite waste material was physically upgraded to 10,765 ppm with ~72% recovery using a novel separation technique called hydrophobic-hydrophilic separation (HHS). The NaOH pretreatment and ammonium sulfate leaching process can also effectively recover REEs from the concentrate. The proposed leaching technology in this study can extract REEs from other low-grade clayey waste materials under mild conditions, which helps reduce wastewater generation and energy consumption. Furthermore, it will relieve the supply risk of REEs in the future.

Page generated in 0.1333 seconds