• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2824
  • 479
  • 476
  • 375
  • 164
  • 137
  • 72
  • 46
  • 46
  • 40
  • 36
  • 34
  • 25
  • 25
  • 25
  • Tagged with
  • 5850
  • 862
  • 686
  • 613
  • 606
  • 564
  • 509
  • 445
  • 414
  • 410
  • 400
  • 383
  • 379
  • 378
  • 377
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Lithium transport in crown ether polymers

Collie, Luke E. January 1995 (has links)
A series of 12-, 13-, and 14-membered crown ether rings bearing polymerisable side-chains has been synthesised. The crown ethers were attached to a methacrylate or acrylate polymerisable group either via a short link (Ring-CH(_2)-O-Polymer) or via a spacer group. Both hydrocarbon and ethylene oxide spacer groups were used, giving structures of the form (Ring-CH(_2)-O-(CH(_2))(_6)-O-Polymer) and (Ring-CH(_2)-O-((CH(_2)CH(_2))(_2)O)-Polymer). The ethylene oxide chain can potentially bind to a Li(^+) dopant ion. The relative Li(+) binding affinity of 12-, 13-, and 14-membered mono- and disubstituted crown ethers has been assessed by variable temperature (^13)c and (^7)Li NMR. The crown ether bearing monomers were polymerised using standard free-radical polymerisation methods to yield amorphous materials whose glass transition temperature (T(_g)) was controlled principally by the nature of the spacer group. On doping with lithium triflate (LiCF(_3)SO(_3)), the polymers exhibit high ionic conductivity. The conductivity was primarily dependent on polymer T(_g), but was also found to be higher for 12-crown-4 based systems than for 13-crown-4 and 14-crown-4 based analogues. This behaviour was consistent with the results of the NMR studies, which showed that Li(^+) exchange occurs more readily between 12-crown-4 rings than 13- or 14-crown-4 rings. The NMR studies also showed that 12-crown-4 systems have a higher tendency to form 2:1 (ring : Li(^+)) complexes. Within a polymer matrix, the presence of 2:1 complexes allows Li(^+) migration via an association-disassociation mechanism, avoiding the high energy intermediate state of a free or weakly bound Li(^+) ion. The greater encapsulation provided by 2:1 complexation may also aid in ion pair separation.
412

Studies on ion movement in malpighian tubules of Locusta migratoria L. with particular reference to electrical events

Baldrick, Paul January 1987 (has links)
Intracellular microelectrodes have been used in conjunction with ion substitution, and agonists and inhibitors of known transport processes to investigate the mechanisms whereby ions cross the basal and apical cell membranes of the Malpighian tubules of Locusta. Values for basal, apical and transepithelial potentials in 'Normal' saline were -71.6 ± 0.3 mV, -82.6 ± 0.8 mV and +5.7 ± 1.0 mV (lumen positive) respectively. Ion substitution experiments, involving Na(^+),K(^+) and C1(^-) in the bathing media, indicated that the basal membrane was more permeable to K(^+) than Na(^+) and C1(^-). Two different electrical responses to high [K(^+)](_o) saline (the Type A and Type B response) were noted and these probably reflect distinct physiological states of basal membrane permeability. Experiments with ouabain and vanadate suggested that whilst Na(^+)+K(^+) ATPase activity, which has been demonstrated in microsomal preparations, was not significantly electrogenic, asymmetric ionic distribution across the basal membrane was partly maintained by thisenzyme Furthermore, 3-H ouabain-binding studies indicated that Na(^+)+K(^+) exchange 'pump' turnover was adequate to account for substantial entry and Na^ exit across the basal membrane. The electrochemicalgradient across the apical membrane suggests that exit from the cell must involve an active process with CI following passively. Data from ion substitution experiments and treatment with furosemide and bumetanide suggest that CI entry across the basalmembrane may be via cotransport with Na^ and/or K^. However, the+ —differential electrical responses to Na(^+) free and C1(^-) free salines question the role of Na(^+) in this process. The effects of c AMP, Ca(^2+) substitution and various inhibitors on basal and apical membrane potentials, taken in conjunction with the results referred to above, are discussed and a hypothetical model proposed whereby changes in intracellular Ca(^2+) and c AMP effect control of ion movements across the two cell surfaces.
413

Mass transport to rotating reticulated vitreous carbon cylinder electrodes

Reade, Gavin W. January 1996 (has links)
No description available.
414

A study of the development of polyhipe foam materials for use in separation processes

Bhumgara, Zubin Godrej January 1995 (has links)
No description available.
415

Energy and Water Conservation in Biodiesel Purification Processes

Hastie, Michele 14 November 2011 (has links)
Biodiesel purification processes generate wastewater streams that require a large amount of energy when distillation is used as a treatment technology. Process simulation software was used to show that an alternative water treatment process involving ion exchange would require only 31% of the energy used by distillation. Experiments showed that multiple washing stages were required to meet the standard specification for sodium, an impurity present in crude biodiesel, when washing biodiesel made from used frying oil. A comparison was made between washing biodiesel in a cross-current washing configuration and a counter-current configuration. Both configurations met the specification for sodium within three washing stages; however, the counter-current configuration required less water, making it the more efficient process. Lastly, the removal of sodium from wastewater samples using an ion exchange resin was experimentally investigated. The results validated the use of ion exchange to reduce energy consumption in biodiesel purification.
416

Frabrication and characterization of optical slab and channel waveguides by ion exchange

Reid, James D. January 1984 (has links)
No description available.
417

Development of the Voltage-Gated Sodium and Potassium Currents Underlying Excitability in Zebrafish Skeletal Muscle

Coutts, Christopher 11 1900 (has links)
Excitable cells display dynamically regulated changes in the properties of ion currents during development. These changes are crucial for the proper maturation of cellular excitability, and therefore have the potential to affect more sophisticated functions, including neural circuits, movements, and behaviors. Zebrafish skeletal muscle is an excellent model for studying the development of ion channels and their contributions to excitability. They possess distinguishable populations of red and white muscle fibers, whose biological functions are well understood. The main objectives of this thesis were: (1) To characterize the development of muscle excitability by examining properties of voltage-gated sodium and potassium currents expressed in embryonic and larval zebrafish during the first week of development. (2) To elucidate some of the mechanisms by which ion current development might be controlled, beginning with activity-dependent and phosphorylation-dependent mechanisms. These objectives were approached using whole-cell electrophysiological techniques to examine the voltage-dependent and kinetic properties of voltage-gated sodium and potassium currents in intact zebrafish skeletal muscle preparations. Mutant sofa potato zebrafish, which lack functional nicotinic acetylcholine receptors, were then utilized to determine whether synaptic activity at the neuromuscular junction is required for proper ion current development. Finally, protein kinases were activated pharmacologically in order to determine whether they were able to modulate ion currents during development. The results revealed that properties of ion currents undergo a developmental progression, including increased current density, accelerated kinetics, and shifts in voltage-dependence; these developments correlated well with the maturation of muscle action potentials and the movements and behaviors they mediate. Sofa potato mutants were found to be deficient in certain aspects of ion current development, but other aspects appeared to be unaffected by a lack of synaptic activity. Protein kinase A demonstrated the ability to drastically reduce potassium current density; however the effects of PKA were similar at all developmental stages. Overall, these findings provide novel insight into the roles played by voltage-gated currents during the development of excitability in zebrafish skeletal muscle, and expand the rapidly growing body of knowledge about ion channel function in general. / Physiology, Cell & Developmental Biology
418

Ion transport and photosynthesis of Elodea densa

Betts, William Henry January 1979 (has links)
ix, 134 leaves : tables, graphs (part fold.) ; 30 cm / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.), University of Adelaide, Dept. of Botany, 1979
419

Decoherence, Measurement and Quantum Computing in Ion Traps

Schneider, Sara Unknown Date (has links)
This thesis is concerned with various aspects of ion traps and their use as a quantum simulation and computation device. In its first part we investigate various sources of noise and decoherence in ion traps. As quantum information is very fragile, a detailed knowledge of noise and decoherence sources in a quantum computation device is essential. In the special case of an ion trap quantum computer we investigate the effects of intensity and phase noise in the laser, which is used to perform the gate operations. We then look at other sources of noise which are present without a laser being switched on. These are fluctuations in the trapping frequency caused by noise in the electric potentials applied to the trap and fluctuating electrical fields which will cause heating of the centre-of-mass vibrational state of the ions in the trap. For the case of fluctuating electrical fields we estimate the effect on a quantum gate operation. We then propose a scheme for performing quantum gates without having the ions cooled down to their motional ground state. The second part deals with various aspects of the use of ion traps as a device for quantum computation. We start with the use of ionic qubits as a measurement device for the centre-of-mass vibrational mode and investigate in detail the effect these measurements will have on the vibrational mode. If one wants to use quantum computation devices as systems to simulate quantum mechanics, it is of interest to know how to simulate say a k-level system with N qubits. We investigate the easiest case of this wider problem and look at how to simulate a three-level system (a so called trit) with two qubits in an ion trap quantum computer. We show how to get and measure a SU (3) geometric phase with this toy model. Finally we investigate how to simulate collective angular momentum models with a string of qubits in an ion trap. We assume that the ionic qubits are coupled to a thermal reservoir and derive a master equation for this case. We investigate the semiclassical limit of this master equation and, in the case for two qubits in the trap, determine the entanglement of the steady state. We also outline a way to find the steady state for the master equation using coherence vectors.
420

Studies in solvent extraction chemistry and ion-selective electrodes /

Cattrall, R. W. January 1985 (has links) (PDF)
Thesis (D. Sc.)--University of Adelaide, Faculty of Science, 1985. / Consists mainly of offprints of articles by the author. Includes bibliographical references.

Page generated in 0.0437 seconds