• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HYDROGENATION AND HYDROGENOLYSIS OF FURAN DERIVATIVES USING BIPYRIDINE-BASED ELECTROPHILIC RUTHENIUM(II) CATALYSTS

Gowda, Anitha Shankaralinge 01 January 2013 (has links)
The catalytic activity of ruthenium(II) bis(diimine) complexes cis-[Ru(6,6′-Cl2bpy)2(OH2)2](Z)2 (2, Z = CF3SO3; 3, Z = (3,5-(CF3)2C6H3)4B ,i.e. BArF), cis-[Ru(4,4′-Cl2bpy)2(OH2)2](Z)2 (4, Z = CF3SO3; 5, Z = BArF) and cis-[Ru(bpy)2(PR3)(OH2)](CF3SO3)2 (7, bpy = 2,2’-bipyridine, PR3 = P(C6H4F)3; 8, bpy = 2,2-bipyridine, PR3 = PPh3; 9, bpy = 4,4’-dichloro-2,2’-bipyridine, PR3 = PPh3; 10, bpy = 4,4’-dimethyl-2,2’-bipyridine, PR3 = P(C6H4F)3) for the hydrogenation and hydrogenolysis of furfural (FFR), furfuryl alcohol (FFA) and 5-hydroxymethylfurfural (HMF) was investigated. The compounds 2-5 are active and highly selective catalysts for the hydrogenation of FFR to FFA. Using 2 as catalyst at 100 °C, hydrogenation of FFR proceeded to high conversion (≥98%) and with 100% selectivity to FFA in 2 h. The catalyst cis-[Ru(6,6′-Cl2bpy)2(OH2)2](CF3SO3)2 (2) also showed some activity for hydrogenolysis of FFR and FFA at 130 °C in ethanol, giving up to 25% of 2-methylfuran (MF) yield. The catalyst 3 alsodisplayed high catalytic activity for the hydrogenation of FFA to tetrahydrofurfuryl alcohol. Catalysts 7-10 are also active towards the hydrogenation of furfural (FFR) in NMP giving >90% FFR conversion with 100% selectivity for furfuryl alcohol (FFA) in 12 h. Compounds 7-10 are active C-O bond hydrogenolysis catalysts in presence of bismuth halide Lewis acids. For example, hydrogenolysis of FFA in the presence of 1 mol% of catalyst cis-[Ru(4,4’-Cl2bpy)2(PPh3)(OH2)](CF3SO3)2 (9) and 20 mol% bismuth bromide at 180 °C/51 atm H2 pressure gave >96% conversion of FFA and 55% MF yield. Compounds 7-10 in the presence of bismuth halides, showed almost 100% conversion of HMF with a very high selectivity (65-72%) for 2,5-DMF, along with 10-12% of MF, and trace amount of 5-methylfurfural (MeFFR). In order to test the activity of ruthenium hydrides towards the C-O bond hydrogenation and hydrogenolysis of HMF, series of monocationic ruthenium complexes cis-[Ru(bpy)2(PR3)(H)](CF3SO3) (12, bpy = 2,2’-bipyridine, PR3 = P(C6H4F)3; 13, bpy = 2,2-bipyridine, PR3= PPh3; 14, bpy = 4,4’-dimethyl-2,2’-bipyridine, PR3= P(C6H4F)3) were prepared. The hydrogenation of HMF using catalysts 12-14, produced 70-72% of 2,5-DMF and 11% MF, suggesting that ruthenium hydrides are active and efficient catalysts for HMF hydrogenation.

Page generated in 0.1441 seconds