• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 1
  • Tagged with
  • 24
  • 24
  • 12
  • 12
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iron catalyst supported on carbon nanotubes for Fischer-Tropsch synthesis : experimental and kinetic study

Malek Abbaslou, Mohammad Reza 06 July 2010
The main objectives of the present Ph.D. thesis are comprehensive studies on activity, selectivity and stability of iron catalysts supported on carbon nanotubes (CNTs) for Fischer-Tropsch (FT) reactions. In order to prepare iron catalyst supported on CNTs, it was necessary to study CNT synthesis in bulk scale. Therefore, a part of this research was devoted to the production and characterization of CNTs. High purity, aligned films of multi-walled carbon nanotubes were grown on quartz substrates by feeding a solution of ferrocene in toluene, in a carrier gas of Ar/H2, into a horizontal chemical vapour deposition (CVD) reactor. Results for CNTs synthesized using a wide range of toluene concentrations indicated that, for carbon concentrations higher than ~9.6 mol/m3, catalyst deactivation occurs due to encapsulation of iron metal particles.<p> As the first step of catalyst development for FT reactions a fixed bed micro-reactor system was built and the effects of acid treatment on the activity, product selectivity and stability of iron Fischer-Tropsch catalysts supported on carbon nanotubes were studied. The results of Raman analysis showed that the acid treatment increased the number of functional groups as anchoring sites for metal particles. Fe catalysts supported on CNTs which were pre-treated with nitric acid at 110°C were more stable and active compared to the un-treated catalysts. In order to study the effects of catalytic metal site position on FT reactions, a method was developed to control the position of the deposited metal clusters on either the inner or outer surfaces of the CNTs. According to the results of the FT experiments, the catalyst with catalytic metal sites inside the pores exhibited higher selectivity (C<sub>5</sub><sup>+</sup> = 36 wt%) to heavier hydrocarbons compared to one with sites on the outer surfaces (C<sub>5</sub><sup>+</sup> = 24 wt%) . In addition, deposition of catalytic sites on the interior surfaces of the nanotubes resulted in a more stable catalyst.<p> The effects of pore diameter and structure of iron catalysts supported on CNTs on Fischer-Tropsch reaction rates and selectivities were also studied. In order to examine the effects of pore diameter, two types of CNTs with similar surface areas and different average pore sizes (12 and 63 nm) were prepared. It was found that the deposition of metal particles on the CNT with narrow pore size (in the range of larger than 10-15 nm) resulted in more active and selective catalyst due to higher degree of reduction and higher metal dispersion.<p> Promotion of the iron catalyst supported on CNTs with Molybdinium in the range of 0.5-1 wt % resulted in a more stable catalyst. Mo improves the stability of the iron catalyst by preventing the metal site agglomeration. Promotion of the iron catalysts with potassium increased the activity of FT and water-gas-shift reactions and the average molecular weight of the hydrocarbon products. Promotion of the iron catalyst supported on CNTs with 0.5% Cu and 1wt% K resulted in an active (5.6 mg HC/g-Fe.h), stable and selective catalyst (C<sub>5</sub><sup>+</sup> selectivity of 76%) which exhibited higher activity and better selectivity compared to the similar catalysts reported in the literature. Kinetic studies were conducted to evaluate reaction rate parameters using the developed potassium and copper promoted catalyst. It was found that the CO<sub>2</sub> inhibition is not significant for FT reactions. On the other hand, water effects and presence of vacant sites should be considered in the kinetic models. A first-order reaction model verified that the iron catalyst supported on CNTs is more active than precipitated and commercial catalysts. The results of the present Ph.D. thesis research provide a map for designing catalysts using carbon nanotubes as a support. The key messages of the present thesis are as follows:<p> 1- If the interaction of the metal site and support is strong, which poses negative effects on the catalytic performance, carbon nanotubes can be one solution.<p> 2- Acid pre-treatments are required prior to impregnating nanotubes with metal salt solution. Also, the strong acid treatment should be used for deposition of catalytic sites inside the pores of nanotubes.<p> 3- The structure and pore size of nanotubes have significant influence on the stability, activity and selectivity of the target catalyst.<p> 4- The position of the catalytic sites has to be selected based on the type of reaction. In the case of Fischer-Tropsch reactions, the deposition of catalytic sites inside the pores of nanotubes results in higher activity, longer life span.<p> The outcome of this Ph.D. thesis has been published/submitted in the form of 13 journal papers, one patent, one technical report and presented at 11 conferences.
2

Iron catalyst supported on carbon nanotubes for Fischer-Tropsch synthesis : experimental and kinetic study

Malek Abbaslou, Mohammad Reza 06 July 2010 (has links)
The main objectives of the present Ph.D. thesis are comprehensive studies on activity, selectivity and stability of iron catalysts supported on carbon nanotubes (CNTs) for Fischer-Tropsch (FT) reactions. In order to prepare iron catalyst supported on CNTs, it was necessary to study CNT synthesis in bulk scale. Therefore, a part of this research was devoted to the production and characterization of CNTs. High purity, aligned films of multi-walled carbon nanotubes were grown on quartz substrates by feeding a solution of ferrocene in toluene, in a carrier gas of Ar/H2, into a horizontal chemical vapour deposition (CVD) reactor. Results for CNTs synthesized using a wide range of toluene concentrations indicated that, for carbon concentrations higher than ~9.6 mol/m3, catalyst deactivation occurs due to encapsulation of iron metal particles.<p> As the first step of catalyst development for FT reactions a fixed bed micro-reactor system was built and the effects of acid treatment on the activity, product selectivity and stability of iron Fischer-Tropsch catalysts supported on carbon nanotubes were studied. The results of Raman analysis showed that the acid treatment increased the number of functional groups as anchoring sites for metal particles. Fe catalysts supported on CNTs which were pre-treated with nitric acid at 110°C were more stable and active compared to the un-treated catalysts. In order to study the effects of catalytic metal site position on FT reactions, a method was developed to control the position of the deposited metal clusters on either the inner or outer surfaces of the CNTs. According to the results of the FT experiments, the catalyst with catalytic metal sites inside the pores exhibited higher selectivity (C<sub>5</sub><sup>+</sup> = 36 wt%) to heavier hydrocarbons compared to one with sites on the outer surfaces (C<sub>5</sub><sup>+</sup> = 24 wt%) . In addition, deposition of catalytic sites on the interior surfaces of the nanotubes resulted in a more stable catalyst.<p> The effects of pore diameter and structure of iron catalysts supported on CNTs on Fischer-Tropsch reaction rates and selectivities were also studied. In order to examine the effects of pore diameter, two types of CNTs with similar surface areas and different average pore sizes (12 and 63 nm) were prepared. It was found that the deposition of metal particles on the CNT with narrow pore size (in the range of larger than 10-15 nm) resulted in more active and selective catalyst due to higher degree of reduction and higher metal dispersion.<p> Promotion of the iron catalyst supported on CNTs with Molybdinium in the range of 0.5-1 wt % resulted in a more stable catalyst. Mo improves the stability of the iron catalyst by preventing the metal site agglomeration. Promotion of the iron catalysts with potassium increased the activity of FT and water-gas-shift reactions and the average molecular weight of the hydrocarbon products. Promotion of the iron catalyst supported on CNTs with 0.5% Cu and 1wt% K resulted in an active (5.6 mg HC/g-Fe.h), stable and selective catalyst (C<sub>5</sub><sup>+</sup> selectivity of 76%) which exhibited higher activity and better selectivity compared to the similar catalysts reported in the literature. Kinetic studies were conducted to evaluate reaction rate parameters using the developed potassium and copper promoted catalyst. It was found that the CO<sub>2</sub> inhibition is not significant for FT reactions. On the other hand, water effects and presence of vacant sites should be considered in the kinetic models. A first-order reaction model verified that the iron catalyst supported on CNTs is more active than precipitated and commercial catalysts. The results of the present Ph.D. thesis research provide a map for designing catalysts using carbon nanotubes as a support. The key messages of the present thesis are as follows:<p> 1- If the interaction of the metal site and support is strong, which poses negative effects on the catalytic performance, carbon nanotubes can be one solution.<p> 2- Acid pre-treatments are required prior to impregnating nanotubes with metal salt solution. Also, the strong acid treatment should be used for deposition of catalytic sites inside the pores of nanotubes.<p> 3- The structure and pore size of nanotubes have significant influence on the stability, activity and selectivity of the target catalyst.<p> 4- The position of the catalytic sites has to be selected based on the type of reaction. In the case of Fischer-Tropsch reactions, the deposition of catalytic sites inside the pores of nanotubes results in higher activity, longer life span.<p> The outcome of this Ph.D. thesis has been published/submitted in the form of 13 journal papers, one patent, one technical report and presented at 11 conferences.
3

SUPERCRITICAL PHASE FISCHER-TROPSCH SYNTHESIS INHIBITION OF CO2 SELECTIVITY FOR ENHANCED HYDROCARBON PRODUCTION

Benoit, Jeremiah 01 January 2008 (has links)
ABSTRACT This thesis presents the results from research conducted on Fischer-Tropsch synthesis (FTS) in supercritical CO2 from syngas (H2:CO =1:1) typically produced from coal gasification and using a Fe-Zn-K catalyst. Experiments were conducted with syngas alone at different pressures (200 psi - 1050 psi) and temperatures (275, 350 and 375 oC). Experiments were also conducted with a syngas pressure of 200 psi and at different partial pressures of an inert diluent (N2) such that the total pressure varied from 200 psi to 1050 psi. Finally, experiments were conducted with CO2 as a diluent and at a syngas pressure of 200 psi. The CO2 partial pressure was increased from 0 psi to 1400 psi (non critical to supercritical conditions). The data show an enhancement in the hydrocarbon selectivity and reduction in the parasitic loss of carbon efficiency due to CO2 formation along with significant improvement in the conversion rates. The experiments were conducted in a unique reactor setup that can conduct gas phase or supercritical phase FT synthesis in both batch or flow modes. The use of the supercritical CO2 (ScCO2) inhibited both CH4 and CO2 selectivities while enhancing the rates of synthesis. In addition, the use of supercritical CO2 is expected to prolong the life of the catalyst presumably by removing the heat of reaction from the catalyst's surface and solubilizing the waxes that tend to deposit on the surface. Although not within the scope of this thesis, the products from such a reactor system can be easily separated without the need of an additional unit process simply by tuning the pressure and temperature. The product spectrum and the selectivities for the different products are presented for each set of experiments. The effects of process parameters such as temperature, pressure, N2 partial pressure, and CO2 partial pressure on the product spectrum are also discussed. The clear increase in CO conversion at H2:CO ratio of 1:1 in supercritical phase as compared to gas phase reaction, the decrease in CO2 and CH4 selectivity, and an overall shift in the product distribution towards higher hydrocarbons have been demonstrated. Thus the use of supercritical CO2 has the potential through the FT process to convert coal to liquid fuels using Fe based catalysts, especially since the reactions can be conducted in a two phase regime without losing the benefits of the 3-phase slurry reactor systems
4

Development of Iron-Catalyzed C-N and C-C Bond Forming Reactions toward Functional Arylamine Synthesis / 機能性芳香族アミン類の合成を志向した鉄触媒炭素-窒素及び炭素-炭素結合生成反応の開発

Aoki, Yuma 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21780号 / 工博第4597号 / 新制||工||1716(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 中村 正治, 教授 大江 浩一, 教授 村田 靖次郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
5

Synthesis of Zwitterionic Iron(II) Catalyst For Carbonylative Polymerization

Lyu, Jingqing 12 April 2021 (has links)
No description available.
6

Developing Earth-abundant metal-catalysts for hydrofunctionalisation

Paliga, James Francis January 2018 (has links)
The iron-catalysed hydromagnesiation of styrene derivatives has been developed further from previous publications, expanding the electrophile scope to enable the regioselective formation of new carbon-carbon and carbon-heteroatom bonds (Scheme A1). A commercially available pre-catalyst and ligand were used to give an operationally simple procedure that did not require prior synthesis of a catalyst. This work also investigated the hydromagnesiation of dienes, using a screen of ligands commonly used in transition metal catalysis. An investigation into the magnesium-catalysed hydroboration of olefins was also carried out. Although mostly unsuccessful, it was demonstrated that in the presence of a magnesium catalyst, a small amount of vinyl boronic ester could be formed from an alkyne (Scheme A2). Simple magnesium salts were also investigated for the reduction of carbonyls. Lastly, this work explored the titanium-catalysed hydrosilylation of olefins, using a novel activation method developed within the group (Scheme A3). The results were compared to those published previously using traditional organometallic activation methods and attempts at identifying conditions to improve chemoselectivity were carried out.
7

Photocatalytic Carbon Dioxide Reduction with Zinc(II) Dipyrrin Photosensitizers and Iron Catalyst

Rasheed, Senan 01 May 2020 (has links)
Much of the energy used in the United States and around the globe is obtained from petroleum, natural gas, and coal. Photocatalytic CO2 reduction can be used to transform CO2 to useful fuels and making fossil fuels more renewable. Input of energy is required, and the sun can provide the required energy for this transformation. Photosensitizer, catalyst, and electron donor are required for photocatalytic CO2 reduction. Due to lack of earth-abundant sensitizers, zinc dipyrrin complexes were synthesized by previous group members and have been used as photosensitizers in this research. The ground and excited state electrochemical properties of two zinc dipyrrin complexes were determined in polar and nonpolar solvents and the measured potentials were used to match the zinc sensitizers with an energetically appropriate iron porphyrin catalyst and a benzylthiol sacrificial electron donor. Lastly, pure CO2 gas was used as the source of carbon for the reduction of CO2 by photocatalysis with the zinc photosensitizers, iron catalyst and sacrificial electron donor. The products formed in headspace were analyzed by GC
8

Development of Iron-Catalyzed Selective Cross-Coupling Reactions toward Natural Product Synthesis / 精密鉄触媒クロスカップリング反応の開発と天然物合成への応用

Agata, Ryosuke 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21784号 / 工博第4601号 / 新制||工||1717(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 中村 正治, 教授 近藤 輝幸, 教授 村田 靖次郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
9

Synthesis of nanostructured silica for use as a support for iron Fischer-Tropsch catalysts

Khoabane, Keneiloe 23 May 2008 (has links)
ABSTRACT Nanostructured silica materials were synthesised by the sol-gel process using simple hydroxyacids as template precursors, and these materials were employed as supports for a low temperature iron Fischer-Tropsch (FT) catalyst. Thus, this thesis is divided into two parts: (I) the synthesis of nanostructured silica gels, and (II) their use as catalyst supports in the FT reaction. PART I The effects of synthesis conditions, acidic and basic template precursors and their amounts, synthesis temperature, duration of hydrolysis and ageing, solvent concentration, organic co-solvent, and the synthesis procedure used on the morphology of the silica materials were studied. The synthesised silica gels were characterised by TEM, SEM, BET, TGA, and XRD. Mixtures of different morphologies were obtained with all the hydroxyacids used and the studies revealed that the morphology of the resultant silica gels was largely determined by the type of the hydroxyacid used. The use of oxalic acid produced materials with 4-9 % micropores and a mixture of meso- and macropores mainly consisting of hollow tubes and hollow spheres; the use of D-gluconic and L-tartaric acids produced mesoporous materials mainly consisting of hollow spheres and sheets with folds, respectively; while the use of stearic and cinammic acids produced macroporous materials mainly consisting of solid spheres and undeveloped particles, respectively. The silica gels formed were found to be amorphous in nature, despite the different morphologies that existed in them, and were also thermally stable.Studies involving the use of oxalic and D-gluconic acids showed that the key to the shape of the resultant morphologies resided in the shape of the template crystals formed in solution under specific synthesis conditions. The template shape depended on the type of the template precursor (i.e. both the acid and the base) and its amount. It was also observed that under certain conditions, both at elevated temperatures (≥ 55 oC) and at high water concentrations (> 50 %), the template dissolved and this led to low yields of shaped morphologies (i.e. hollow spheres and tubes). The solvent concentration to produce a maximum tube yield (in the case of oxalic acid) and hollow sphere yield (in the case of D-gluconic acid) was found to require about 25- 50 % water. Very well-developed tubes were also obtained at this concentration (i.e. with oxalic acid). Long hydrolysis and ageing times (i.e. > 2 h) of the sols and gels, respectively, resulted in the formation of surface attached colloidal particles and of tubes and hollow spheres with decreased wall thicknesses. Pre-formation of the template prior to addition of TEOS produced materials with lower surface areas, higher tube yields and bigger tube sizes when compared with materials synthesised by forming the template together with the silica gel. PART II Two types of silica gels were used as supports for an iron FT catalyst; the nanostructured silica gels (tubes with surface area 109 m2/g and spheres with surface area 245 m2/g ) and a commercial silica gel (Davisil silica, surface area 273 m2/g - consisting of undeveloped particles). The effect of varying the potassium promotion levels and of the support morphology on the catalyst activity and selectivity in the FT reaction was studied at 250 oC, in a slurry operated CSTR.It was observed that an increase in the potassium loading up to 0.5 wt % in the Davisil silica catalyst led to a decrease in the catalyst FT and water gas shift (WGS) activity, and methane selectivity. However, the efficiency of the catalyst to produce hydrocarbons increased with an increase in potassium loading up to 0.5 wt %. Increasing the potassium level up to 0.9 wt % led to a slight increase in both the catalyst activity and methane selectivity, and a decrease in the catalyst efficiency. For the silica tubes catalyst, increasing the potassium loading to 0.5 wt % led to an increase in the catalyst activity and methane selectivity, while increasing the potassium level up to 0.9 wt % led to a decrease in the catalyst activity. For both supports, increasing the potassium loading led to an increase in the selectivity towards high molecular weight hydrocarbons, olefins (relative to paraffins) and terminal olefins (relative to internal olefins). While the Davisil silica and the silica tube catalysts remained more or less stable throughout the reaction, the activity of the silica spheres catalyst declined rapidly with time. The nanostructured silica gel supported catalysts both showed higher activities and methane selectivities, but lower efficiencies when compared to the Davisil silica catalyst. Although the selectivity of all three catalysts towards olefins were similar, their selectivity towards high molecular weight hydrocarbons decreased in the order Davisil silica > silica spheres > silica tubes. Elongated needlelike Fe nanoparticles (NPs) were obtained in the silica tubes catalyst, semi hexagonal Fe NPs were formed in the silica spheres catalyst, while the Fe NPs could not be distinguished from the support in the Davisil silica catalyst. After the reaction, the surface areas of all three catalysts were found to have decreased and the catalysts to have sintered. The nanostructured silica supported catalysts showed the presence of Fe nanozones surrounded by a layer of amorphous carbon, while only agglomerated particles of Fe and some carbon rich regions were observed in the Davisil silica catalyst. No evidence of alteration of the morphology of the nanostructured silica supports was observed after the reaction.
10

SÃntese e anÃlise de catalisadores de ferro suportados em carbono ativado para sÃntese de Fischer-Tropsch / Synthesis and analysis of iron catalyst supported on activated carbon for Fischer-Tropsch synthesis

Marcia Gabriely Alves da Cruz 21 February 2014 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Este trabalho teve como objetivo sintetizar catalisadores metÃlicos de ferro suportados em carbono ativado a base de polÃmeros para sÃntese de Fischer-Tropsch. A preparaÃÃo dos catalisadores foi realizada pelo mÃtodo de impregnaÃÃo a umidade incipiente, utilizando soluÃÃo aquosa de nitrato de ferro nonahidratado para obtenÃÃo de amostras com, aproximadamente, 55% de ferro. Duas amostras foram preparadas (FeCP1 e FeCP2) e caracterizadas por fluorescÃncia de raios-X por energia dispersiva (EDXRF), difraÃÃo de raios-X (DRX), medidas de fisissorÃÃo de nitrogÃnio, espectroscopia fotoeletrÃnica de raio-X (XPS), microscopia eletrÃnica de varredura (SEM-EDS) e reduÃÃo à temperatura programada (TPR). As amostras foram submetidas tambÃm a testes catalÃticos, utilizando-se diferentes condiÃÃes de temperatura (513, 528 e 543 K), pressÃo (20, 25 e 30 atm) e razÃo molar H2:CO de 1 e 0,5. Os dados de EDXRF evidenciaram considerÃvel diferenÃa no teor de metal impregnado entre os dois catalisadores; o FeCP2 apresentou teor prÃximo ao esperado enquanto o catalisador FeCP1 ficou aquÃm do desejado. Os difratogramas obtidos por DRX mostraram um maior grau de cristalinidade da amostra FeCP2, enquanto FeCP1 e os dois suportes (CP1 e CP2) apresentaram-se como semi-cristalinos. Para o catalisador FeCP2, apresentaram-se duas fases ativas presentes, &#945;-Fe2O3 e &#947;-Fe2O3; jà no FeCP1, hà apenas &#945;-Fe2O3. A anÃlise das caracterÃsticas texturais revelou que, apÃs a introduÃÃo metÃlica no suporte, houve decrÃscimo nos valores de Ãrea especÃfica, volume de poros e diÃmetro de poros, sendo mais perceptÃvel para o catalisador FeCP2. As curvas de XPS expuseram os grupos funcionais oxigenados presentes na superfÃcie dos suportes, bem como a presenÃa do Fe+3 como fase ativa predominante em ambos os catalisadores. O espectro de ambos os catalisadores apresentou tambÃm um pico satÃlite que sugere a presenÃa de um outro estado de valÃncia do ferro semelhante ao que se tem no carbeto de ferro. As imagens obtidas por SEM exibiram forma e superfÃcie irregulares, sendo as partÃculas presentes no FeCP2 maiores que a do FeCP1 devido a sua cristalinidade. Os dados de EDS demonstraram que, aproximadamente, metade do percentual de ferro presente no catalisador encontra-se na superfÃcie. Pode-se inferir tambÃm por essa anÃlise, utilizando-se seu espectro, a presenÃa de carbeto de ferro na superfÃcie do catalisador. As curvas de TPR evidenciaram uma maior estabilidade do catalisador FeCP2 mediante o FeCP1, por este ter apresentado trÃs etapas de reduÃÃo do Ãxido de ferro e nÃo duas, como apresentada para aquele Ãltimo. O teste catalÃtico expÃs a melhor eficiÃncia do catalisador FeCP2 para a produÃÃo de hidrocarbonetos na faixa de C5-C9, para as mesmas condiÃÃes de temperatura, pressÃo e razÃo molar. Entretanto, a diminuiÃÃo da razÃo molar desfavoreceu a obtenÃÃo de hidrocarbonetos pesados. / The aim of this work was to synthesize iron catalysts supported on polymer-based activated carbons, for the Fischer-Tropsch synthesis. The preparation of the catalysts was performed by incipient wetness impregnation method using an aqueous solution of iron nitrate nonahydrate to obtain samples with approximately 55 % of iron. Two samples were prepared (FeCP1 and FECP2) and characterized by energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), nitrogen adsorption measurements, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS) and temperature-programmed reduction (TPR). The samples were also submitted to catalytic tests using different conditions of temperature (513, 528 and 543 K), pressure (20, 25 and 30 atm), and H2:CO molar ratio of 1 and 0.5. EDXRF data showed considerable difference in content of impregnated metal for both catalysts. FeCP2 exhibited an iron load close to the value expected while FeCP1 presented an iron load significantly lower than expected. XRD patterns showed a higher degree of crystallinity of the sample FeCP2, whereas FeCP1 and both supports used (CP1 and CP2) were found to be semi-crystalline. FeCP2 catalyst presented two active phases, &#945;-Fe2O3 and &#947;-Fe2O3, while FeCP1 showed only one phase, &#945;-Fe2O3. The analysis of the textural characteristics revealed a decrease in the values of the specific area, pore volume and pore diameter after the introduction of the metal into the support, which was more noticeable with the FeCP2 catalyst. XPS patterns indicated oxygen functional groups on the support surface and the presence of Fe+3 as the predominant active phase on both catalysts. The spectrum of both catalysts also showed a satellite peak which shows the presence of another valence state similar to the iron carbide. Images obtained by SEM revealed irregular shape and surface, being the particles present in FeCP2 greater than those on FeCP1 due to the crystallinity of the former. EDS data showed that approximately half of the iron percentage present in the catalyst bulk is on the surface. The presence of iron carbide on the catalyst surface can be inferred by using this spectrum analysis too. TPR graphics demonstrated a higher stability of the FeCP2, due to the three-step reduction of iron oxide instead of two as shown for the FeCP1. According to the results of the catalytic tests FeCP2 exhibited a better efficiency for the production of hydrocarbons in the C5-C9 range, for the same conditions of temperature, pressure and molar ratio. However, the decrease in the molar ratio disfavors the production of heavy hydrocarbons.

Page generated in 0.091 seconds