• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of calcium on the inhibition of arsenic desorption from treatment residuals in extreme environments

Camacho, Julianna G. 12 April 2006 (has links)
One of the most toxic environmentally mobile compounds found in water is arsenic. It has been used as a pesticide to control insects, fungi, weeds and rodents since the early part of this century because of its high toxicity. Sorption of toxic metals onto a metal oxy-hydroxide is the most popular and practical arsenic removal method from contaminated water. Water treatment with oxy-hydroxides creates arsenic containing residuals, which are usually disposed of in landfills. To prevent leaching, stabilization of the solid residuals is required. It has been reported that calcium may inhibit arsenic desorption and/or benefit arsenic sorption. The objective of this investigation is to assess arsenic leaching in the presence of calcium and phosphate ions at extreme pH. Two hypotheses have been identified to explain the decrease in soluble arsenic in the presence of calcium. One explanation is that arsenic reacts with calcium to form calcium arsenic solids. The second hypothesis is that calcium affects the surface properties of the oxy-hydroxide solid in solution. Results show that calcium enhances the removal by iron oxides and prevents the leaching of arsenic from the residuals. Isotherm experiments show that arsenic adsorption can be described as occurring on nonporous powders or powders with pore diameters larger than micro-pores. Physically, with increase in adsorbate concentration, second and more layers are completed until saturation when the numbers of adsorbed layers becomes infinite. Further, experimental data were fitted to a Brunauer, Emmett and Teller isotherm (BET) model which assumes the initial layer can act as substrate for further adsorption. Finally, calcium-arsenic and calcium-phosphate solids were predicted to be formed by Visual MINTEQ modeling program. Nevertheless, from the x-ray diffraction output calcium-arsenic or calcium-phosphate solids were not identified. Because no calcium arsenate solids were found it was concluded that calcium affects the surface properties of the oxy-hydroxide solids in solution. Increasing the pH produces negative surface charge, which in turn increases repulsion between the negatively charged hydrated arsenate ions and the Fe(OH)3 surface. Calcium’s positive charge might neutralize this effect enhancing the sorption of arsenic onto the oxy-hydroxide. Also, it was concluded that the competition between arsenic and phosphate was reduced by the same mechanisms.

Page generated in 0.107 seconds