Spelling suggestions: "subject:"ion precipitation""
1 |
Formation Damage Due to Iron Precipitation during Matrix Acidizing Treatments of Carbonate Reservoirs and Ways to Minimize it Using Chelating AgentsAssem, Ahmed I 16 December 2013 (has links)
Iron precipitation during matrix acidizing treatments is a well-known problem. During matrix acidizing, successful iron control can be critical to the success of the treatment. Extensive literature review highlighted that no systematic study was conducted to determine where this iron precipitates, the factors that affect this precipitation, and the magnitude of the resulting damage.
Iron (III) precipitation occurs when acids are spent and the pH rises above 1, which can cause severe formation damage. Chelating agents are used during these treatments to minimize iron precipitation. Disadvantages of currently used chelating agents include limited solubility in strong acids, low thermal stability, and/or poor biodegradability.
In this study, different factors affecting iron precipitation in Indiana limestone rocks were examined. Two chelating agents, GLDA and HEDTA, were tested at different conditions to assess their iron control ability.
Results show that a significant amount of iron precipitated, producing a minimal or no gain in the final permeability, this indicated severe formation damage. The damage increased with the increase of the amount of iron in solution. When chelating agents were used, the amount of iron recovered depended on both chelate-to-iron mole ratio and the initial permeability of the cores. Calcium is chelated along with iron, which limits the effectiveness of chelating agents to control iron (III) precipitation. Acid solutions should be designed considering this important finding for more successful treatments.
|
2 |
Formation Damage due to Iron Precipitation in Acidizing Operations and Evaluating GLDA as a Chelating AgentMittal, Rohit 2011 December 1900 (has links)
Iron control during acidizing plays a key role in the success of matrix treatment. Ferric ion precipitates in the formation once the acid is spent and the pH exceeds 1-2. Precipitation of iron (III) within the formation can cause formation damage. Chelating agents such as EDTA and NTA are usually added to acids to minimize iron precipitation. Drawbacks of these chelating agents include limited solubility in strong acids and poor environmental profile. Hydroxy EDTA was introduced because of its higher solubility in 15 wt% HCl. However, its solubility in 28 wt% HCl is low and it is not readily biodegradable.
In this study we studied the formation damage caused by iron precipitation in acidizing operations and tested the chelate L-glutamic acid, N,N-diacetic acid (GLDA). This chelant is soluble in higher concentrations of HCl. It is readily biodegradable, and is an effective iron control agent. A study was conducted to study the concentration of iron at different pHs ranging from 1-4 without the presence of any chelating agent at room temperature. A similar study was conducted in the presence of a chelating agent. To simulate field conditions, coreflood tests were conducted on Indiana Limestone, Austin Chalk and Pink Desert. Tests were conducted with and without the chelant. Samples of core effluent were collected and iron and calcium concentrations were measured using atomic absorption spectroscopy (AA). The cores were scanned using X-ray before and after acid injection.
Results indicated that precipitation of iron can cause serious reduction in core permeability. The chelate was found to be very effective in chelating iron upto 300 degrees F. No permeability reduction was noted when GLDA was added to the acid. Material balance calculations show that significant amount of the iron that was added to the injected acid was produced when GLDA was used. This chelant is effective, environmentally friendly and can used up to 300 degrees F.
|
3 |
Chemical and Biological Treatment of Acid Mine Drainage for the Removal of Heavy Metals and AcidityDiz, Harry Richard 16 September 1997 (has links)
This dissertation reports the design of a process (patent pending) to remove iron from acid mine drainage (AMD) without the formation of metal hydroxide sludge. The system includes the oxidation of ferrous iron in a packed bed bioreactor, the precipitation of iron within a fluidized bed, the removal of manganese and heavy metals (Cu, Ni, Zn) in a trickling filter at high (>9) pH, with final neutralization in a carbonate bed. The technique avoided the generation of iron oxyhydroxide sludge.
In the packed bed bioreactor, maximum substrate oxidation rate (R<sub>,max</sub>) was 1500 mg L⁻¹ h⁻¹ at dilution rates of 2 h⁻¹, with oxidation efficiency at 98%. The half-saturation constant (similar to a Ks) was 6 mg L⁻¹. The oxidation rate was affected by dissolved oxygen below 2 mg L⁻¹, with a Monod-type Ko for DO of 0.33 mg L⁻¹. Temperature had a significant effect on oxidation rate, but pH (2.0 to 3.25) and supplemental CO₂ did not affect oxidation rates.
Iron hydroxide precipitation was not instantaneous when base was added at a OH/Fe ratio of less than 3. Induction time was found to be a function of pH, sulfate concentration and iron concentration, with a multiple R² of 0.84. Aqueous [Al (III)] and [Mn (II)] did not significantly (α = 0.05) affect induction time over the range of concentrations investigated.
When specific loading to the fluidized bed reactor exceeded 0.20 mg Fe m⁻² h⁻¹, dispersed iron particulates formed leading to a turbid effluent. Reactor pH determined the minimum iron concentration in the effluent, with an optimal at pH 3.5. Total iron removals of 98% were achieved in the fluidized bed with effluent [Fe] below 10 mg L⁻¹. Further iron removal occurred within the calcium carbonate bed.
Heavy metals were removed both in the fluidized bed reactor as well as in the trickling filter. Oxidation at pH >9 caused manganese to precipitate (96% removal); removals of copper, nickel, and zinc were due primarily to sorption onto oxide surfaces. Removals averaged 97% for copper, 70% for nickel and 94% for zinc.
The treatment strategy produced an effluent relatively free of iron (< 3 mg/L), without the formation of iron sludge and may be suitable for AMD seeps, drainage from acidic tailings ponds, active mine effluent, and acidic iron-rich industrial wastewater. / Ph. D.
|
4 |
O uso da extração por solventes para tratamento de licor de lixiviação de minério limonítico de níquel. / The use of solvent extraction for treatment of leach liquor of nickel limonite ore.Paula Aliprandini 06 December 2016 (has links)
O minério limonítico de níquel é considerado uma fonte de níquel e cobalto a partir de mineração. No entanto, o minério é heterogêneo e a concentração dos metais varia conforme a localização. Sendo assim, é necessário o desenvolvimento de uma metodologia que permita determinar os parâmetros de operação de um processo de separação de metais levando em consideração a composição de cada minério. No processo hidrometalúrgico, diversas técnicas de purificação ou separação dos metais podem ser usadas. O presente trabalho estudou o uso da extração por solventes para tratar o licor baseado no lixiviado de minério limonítico de níquel. No processo de extração por solventes foram determinados os parâmetros de extração dos metais como: pH, concentração do extratante na fase orgânica e diluído em querosene, relação entre as fases aquosa e orgânica (A/O) e número de contatos contracorrente teóricos para extração do metal. A extração de 100% do ferro utilizando Cyanex 272 foi determinada em pH 2, concentração do extratante 25% em volume diluído em querosene, relação A/O 1/3 e três contatos contracorrente. Durante a extração do ferro também houve coextração de 27% do cobalto. Foi possível recuperar o cobre da solução através da extração utilizando Acorga M5640 em pH 2, concentração do extratante na fase orgânica igual 5% v/v, relação entre as fases 1/1 e um contato contracorrente. O alumínio e o zinco foram extraídos em pH 3,5, utilizado Cyanex 272 como extratante na concentração 25% em volume, relação A/O 1/2 e dois contatos contracorrente. A fim de obter uma solução aquosa contendo apenas níquel em solução, a última etapa foi a remoção dos metais remanescentes na solução (cobalto, cromo, magnésio e manganês) utilizando Cyanex 272. O pH para essa extração foi 5, a concentração do extratante 20% v/v, relação entre as fases 1/1 e cinco contatos contracorrente. Ao final, foi possível obter uma solução aquosa contendo níquel em solução na concentração 2,52g/L, o que corresponde a 100% do níquel presente na solução sintética. Além do níquel, 0,19 g/L de magnésio e 0,008g/L de cromo permaneceram na solução final. / Nickel limonite ore is a source of nickel and cobalt. However, the ore is heterogeneous and concentration changes according the location of the ore. Therefore, determination of the operating parameters is required to separate the metals taking into account the composition of these ores. Hydrometallurgical process is used to treat leach liquor from ores. This work studied the treatment of synthetic solution based on leach liquor of nickel limonite ore by solvent extraction. During the study was determinated the metals extraction parameters as pH, extractant concentration in the organic phase, aqueous and organic ratio (A/O) and number of theoretical extraction stages. The extraction of iron was 100% using Cyanex 272 at pH 2, extractant concentration 25% (v/v) and three extraction stages at an A/O ratio 1/3. Nevertheless, during the extraction of iron, cobalt was co-extracted. The cobalt lost was 27% at the parameters used to extract. It was possible to recover copper from the synthetic solution using Acorga M5640 as extractant at pH 2, extractant concentration 5% v/v, one extraction stage and an A/O ratio 1/1. Aluminium and zinc were removed from synthetic solution at pH 3.5, organic phase with 25% v/v of Cyanex 272 and two extraction stages at an A/O ratio 1/2. The last part of work was removed cobalt, chromium, magnesium and manganese from the aqueous solution. The reason is staying just nickel in the final solution. Cyanex 272 at pH 5 and 20% v/v concentration was used and five extraction stages and an A/O ratio 1/1 was necessary to extract the metals. The finally solution was composed by 2.52g/L of nickel, corresponding 100% of nickel from synthetic leach liquor of nickel limonite ore. In addition, 0.19g/L of magnesium and 0.008g/L of chromium staying at solution.
|
5 |
O uso da extração por solventes para tratamento de licor de lixiviação de minério limonítico de níquel. / The use of solvent extraction for treatment of leach liquor of nickel limonite ore.Aliprandini, Paula 06 December 2016 (has links)
O minério limonítico de níquel é considerado uma fonte de níquel e cobalto a partir de mineração. No entanto, o minério é heterogêneo e a concentração dos metais varia conforme a localização. Sendo assim, é necessário o desenvolvimento de uma metodologia que permita determinar os parâmetros de operação de um processo de separação de metais levando em consideração a composição de cada minério. No processo hidrometalúrgico, diversas técnicas de purificação ou separação dos metais podem ser usadas. O presente trabalho estudou o uso da extração por solventes para tratar o licor baseado no lixiviado de minério limonítico de níquel. No processo de extração por solventes foram determinados os parâmetros de extração dos metais como: pH, concentração do extratante na fase orgânica e diluído em querosene, relação entre as fases aquosa e orgânica (A/O) e número de contatos contracorrente teóricos para extração do metal. A extração de 100% do ferro utilizando Cyanex 272 foi determinada em pH 2, concentração do extratante 25% em volume diluído em querosene, relação A/O 1/3 e três contatos contracorrente. Durante a extração do ferro também houve coextração de 27% do cobalto. Foi possível recuperar o cobre da solução através da extração utilizando Acorga M5640 em pH 2, concentração do extratante na fase orgânica igual 5% v/v, relação entre as fases 1/1 e um contato contracorrente. O alumínio e o zinco foram extraídos em pH 3,5, utilizado Cyanex 272 como extratante na concentração 25% em volume, relação A/O 1/2 e dois contatos contracorrente. A fim de obter uma solução aquosa contendo apenas níquel em solução, a última etapa foi a remoção dos metais remanescentes na solução (cobalto, cromo, magnésio e manganês) utilizando Cyanex 272. O pH para essa extração foi 5, a concentração do extratante 20% v/v, relação entre as fases 1/1 e cinco contatos contracorrente. Ao final, foi possível obter uma solução aquosa contendo níquel em solução na concentração 2,52g/L, o que corresponde a 100% do níquel presente na solução sintética. Além do níquel, 0,19 g/L de magnésio e 0,008g/L de cromo permaneceram na solução final. / Nickel limonite ore is a source of nickel and cobalt. However, the ore is heterogeneous and concentration changes according the location of the ore. Therefore, determination of the operating parameters is required to separate the metals taking into account the composition of these ores. Hydrometallurgical process is used to treat leach liquor from ores. This work studied the treatment of synthetic solution based on leach liquor of nickel limonite ore by solvent extraction. During the study was determinated the metals extraction parameters as pH, extractant concentration in the organic phase, aqueous and organic ratio (A/O) and number of theoretical extraction stages. The extraction of iron was 100% using Cyanex 272 at pH 2, extractant concentration 25% (v/v) and three extraction stages at an A/O ratio 1/3. Nevertheless, during the extraction of iron, cobalt was co-extracted. The cobalt lost was 27% at the parameters used to extract. It was possible to recover copper from the synthetic solution using Acorga M5640 as extractant at pH 2, extractant concentration 5% v/v, one extraction stage and an A/O ratio 1/1. Aluminium and zinc were removed from synthetic solution at pH 3.5, organic phase with 25% v/v of Cyanex 272 and two extraction stages at an A/O ratio 1/2. The last part of work was removed cobalt, chromium, magnesium and manganese from the aqueous solution. The reason is staying just nickel in the final solution. Cyanex 272 at pH 5 and 20% v/v concentration was used and five extraction stages and an A/O ratio 1/1 was necessary to extract the metals. The finally solution was composed by 2.52g/L of nickel, corresponding 100% of nickel from synthetic leach liquor of nickel limonite ore. In addition, 0.19g/L of magnesium and 0.008g/L of chromium staying at solution.
|
Page generated in 0.133 seconds