1 |
The Irreducible Representations of D2nSoto, Melissa 01 March 2014 (has links)
Irreducible representations of a finite group over a field are important because all representations of a group are direct sums of irreducible representations. Maschke tells us that if φ is a representation of the finite group G of order n on the m-dimensional space V over the field K of complex numbers and if U is an invariant subspace of φ, then U has a complementary reducing subspace W .
The objective of this thesis is to find all irreducible representations of the dihedral group D2n. The reason we will work with the dihedral group is because it is one of the first and most intuitive non-abelian group we encounter in abstract algebra. I will compute the representations and characters of D2n and my thesis will be an explanation of these computations. When n = 2k + 1 we will show that there are k + 2 irreducible representations of D2n, but when n = 2k we will see that D2n has k + 3 irreducible rep- resentations. To achieve this we will first give some background in group, ring, module, and vector space theory that is used in representation theory. We will then explain what general representation theory is. Finally we will show how we arrived at our conclusion.
|
2 |
Representations of the $q$--Deformed Algebra U'$_q$(so$_4$)Andreas.Cap@esi.ac.at 29 January 2001 (has links)
No description available.
|
3 |
Representation Growth of Finitely Generated Torsion-Free Nilpotent Groups: Methods and ExamplesEzzat, Shannon January 2012 (has links)
This thesis concerns representation growth of finitely generated torsion-free nilpotent groups. This involves counting equivalence classes of irreducible representations and
embedding this counting into a zeta function. We call this the representation zeta
function.
We use a new, constructive method to calculate the representation zeta functions of
two families of groups, namely the Heisenberg group over rings of quadratic integers and
the maximal class groups. The advantage of this method is that it is able to be used to
calculate the p-local representation zeta function for all primes p. The other commonly
used method, known as the Kirillov orbit method, is unable to be applied to these
exceptional cases. Specifically, we calculate some exceptional p-local representation
zeta functions of the maximal class groups for some well behaved exceptional primes.
Also, we describe the Kirillov orbit method and use it to calculate various examples
of p-local representation zeta functions for almost all primes p.
|
4 |
Irreducible representations of finite groups in general, $\textbf{SL}_2(\mathbb{F}_4)$ in particularMevik Päts, Oskar January 2022 (has links)
In this paper linear representations of finite groups are introduced, and the associated character theory with it. Some work of linear representations of the dihedral group $D_n$ and the symmetric group $S_n$ is presented. \\We also take a look at the finite matrix groups $\textbf{GL}(\mathbb{F}_q)$ and $\textbf{SL}(\mathbb{F}_q)$. The character table for $\textbf{SL}(\mathbb{F}_4)$ and its representation spaces in an implicit form are calculated. We define the standard representation $\varphi $ of $\textbf{SL}(\mathbb{F}_q)$ and prove that it is irreducible for an arbitrary finite field $\mathbb{F}_q$.
|
5 |
Representations From Group Actions On Words And MatricesAnderson, Joel T 01 June 2023 (has links) (PDF)
We provide a combinatorial interpretation of the frequency of any irreducible representation of Sn in representations of Sn arising from group actions on words. Recognizing that representations arising from group actions naturally split across orbits yields combinatorial interpretations of the irreducible decompositions of representations from similar group actions. The generalization from group actions on words to group actions on matrices gives rise to representations that prove to be much less transparent. We share the progress made thus far on the open problem of determining the irreducible decomposition of certain representations of Sm × Sn arising from group actions on matrices.
|
6 |
Principal Series Representations of <i>GL</i>(2) Over Finite FieldsPoderzay, Regina Carmella 30 May 2018 (has links)
No description available.
|
7 |
Representation Theory Arising From Groups In PhysicsGreen, Jaxon 01 September 2024 (has links) (PDF)
A representation is a group homomorphism whose image is a group of invertible matrices. Representations and their associated matrices are analyzed through well-established techniques from linear algebra. We characterize representations by a unique decomposition into irreducible representations just as we characterize the decomposition of matrices into their eigenspaces. Through the study of these representations, we uncover mathematical relationships that underlie groups with physical applications. Due to physical symmetries, we study how the irreducible representations of groups that embody the actions of even the most basic rotations are utilized in the computation of irreducible representations groups that reflect more complicated mechanics, like the Poincar\'e Group. Further, we utilize the representations of the abstract braid group to gain key insights into understanding the behavior of anyonic systems in quantum mechanics. Finally, we explore the behavior of Fibonacci anyons for ways to understand to illustrate the underlying braid relations.
|
8 |
Aspects of thermal field theory with applications to superconductivityMetikas, Georgios January 1999 (has links)
No description available.
|
9 |
Singularités orbifoldes de la variété des caractères / Orbifold singularities of the character varietyGuerin, Clément 22 June 2016 (has links)
Dans cette thèse, nous nous intéressons à des singularités particulières dans les variétés de caractères. Dans le premier chapitre, on justifie que les caractères de représentations irréductibles d'un groupe fuchsien vers un groupe de Lie complexe semi-simple forment une orbifolde. Le lieu orbifold (i.e. l'ensemble des points dont l'isotropie n'est pas triviale) est constitué des caractères de représentations exceptionnelles. Dans le second chapitre, nous décrivons précisément le lieu orbifold quand le groupe de Lie est le groupe projectif linéaire sur un espace vectoriel complexe dont la dimension est un nombre premier. Dans le troisième et le quatrième chapitre nous cherchons à classifier les groupes d'isotropies possibles à conjugaison près apparaissant quand le groupe de Lie est respectivement un quotient du groupe spécial linéaire pour un espace vectoriel complexe de dimension finie quelconque dans le troisième chapitre et un quotient du groupe de spin complexe dans le quatrième chapitre. / Ln this thesis, we want to understand some singularities in the character variety. ln a first chapter, we justify that the characters of irreducible representations from a Fuchsian group to a complex semi-simple Lie group is an orbifold. The orbifold locus is, then, the characters of bad representations. ln the second chapter, we focus on the case where the Lie group is the projectif linear group over a complex vector space whose dimension is a prime number. ln particular we give an explicit description of this locus. ln the third and fourth chapter, we describe the isotropy groups (i.e. the centralizers of bad subgroups) arising in the cases when the Lie group is a quotient of the special linear group of a complex vector space of finite dimension (third chapter) and when the Lie group is a quotient of a complex spin group in the fourth chapter.
|
Page generated in 0.1348 seconds