Spelling suggestions: "subject:"ischemia brain injury""
1 |
Inhibition of Connexin43 Improves Functional Recovery After Ischemic Brain Injury in Neonatal RatsLi, Xiaojing, Zhao, Heqing, Tan, Xianxing, Kostrzewa, Richard M., Du, Gang, Chen, Yuanyuan, Zhu, Jiangtao, Miao, Zhigang, Yu, Hailong, Kong, Jiming, Xu, Xingshun 01 September 2015 (has links)
Connexin43 (Cx43) is one of the most abundant gap junction proteins in the central nervous system. Abnormal opening of Cx43 hemichannels after ischemic insults causes apoptotic cell death. In this study, we found persistently increased expression of Cx43 8 h to 7 d after hypoxia/ischemia (HI) injury in neonatal rats. Pre-treatment with Gap26 and Gap27, two Cx43 mimetic peptides, significantly reduced cerebral infarct volume. Gap26 treatment at 24 h after ischemia improved functional recovery on muscle strength, motor coordination, and spatial memory abilities. Further, Gap26 inhibited Cx43 expression and reduced active astrogliosis. Gap26 interacted and co-localized with Cx43 together in brain tissues and cultured astrocytes. After oxygen glucose deprivation, Gap26 treatment reduced the total Cx43 level in cultured astrocytes; but Cx43 level in the plasma membrane was increased. Degradation of Cx43 in the cytoplasm was mainly via the ubiquitin proteasome pathway. Concurrently, phosphorylated Akt, which phosphorylates Cx43 on Serine373 and facilitates the forward transport of Cx43 to the plasma membrane, was increased by Gap26 treatment. Microdialysis showed that increased membranous Cx43 causes glutamate release by opening Cx43 hemichannels. Extracellular glutamate concentration was significantly decreased by Gap26 treatment in vivo. Finally, we found that cleaved caspase-3, an apoptosis marker, was attenuated after HI injury by Gap26 treatment. Effects of Gap27 were analogous to those of Gap26. In summary, our findings demonstrate that modulation of Cx43 expression and astroglial function is a potential therapeutic strategy for ischemic brain injury.
|
2 |
7,8-Dihydroxy-4-methylcoumarin Provides Neuroprotection by Increasing Hippocalcin ExpressionJin, Xiaomei, Wang, Yamin, Li, Xiaojing, Tan, Xianxing, Miao, Zhigang, Chen, Yuanyuan, Hamdy, Ronald C., Chua, Balvin H.L., Kong, Jiming, Zhao, Heqing, Xu, Xingshun 01 April 2015 (has links)
7,8-Dihydroxy-4-methylcoumarin (Dhmc) is a precursor in the synthesis of derivatives of 4-methyl coumarin, which has excellent radical scavenging properties. In this study, we investigated whether Dhmc protects against oxidative stress and ischemic brain injury. We found that Dhmc protected against glutamate toxicity in hippocampal HT-22 cells in a concentration-dependent manner in vitro. Dhmc inhibited glutamate-induced glutathione depletion and generation of reactive oxygen species, suggesting that Dhmc has an antioxidant effect. In addition, Dhmc inhibited glutamate-induced depletion of hippocalcin, a protein that buffers intracellular calcium and prevents calcium-induced cell death. In our in vivo studies, Dhmc reduced infarct volume in neonatal rats when administered 4 h after cerebral hypoxia/ischemia injury and attenuated the hypoxia/ischemia injury-induced decrease of hippocalcin expression in neonatal rats. Taken together, these results suggest that Dhmc prevents glutamate-induced toxicity by scavenging free radicals and regulating hippocalcin expression. Dhmc may represent a promising agent in the treatment of acute and chronic neurological disorders induced by oxidative stress.
|
3 |
MAPPING BRAIN CIRCUITS IN HEALTH AND DISEASEQiuyu Wu (6803957) 02 August 2019 (has links)
<p>Intricate neural circuits
underlie all brain functions. However, these neural circuits are highly
dynamic. The ability to change, or the plasticity, of the brain has long been
demonstrated at the level of isolated single synapses under artificial conditions.
Circuit organization and brain function has been extensively studied by
correlating neuronal activity with information input. The primary visual cortex
has become an important model brain region for the study of sensory processing,
in large part due to the ease of manipulating visual stimuli. Much has been
learned from studies of visual cortex focused on understanding the
signal-processing of visual inputs within neural circuits. Many of these
findings are generalizable to other sensory systems and other regions of
cortex. However, few studies have directly demonstrated the orchestrated
neural-circuit plasticity occurring during behavioral experience. </p>
<p>It is vital to
measure the precise circuit connectivity and to quantitatively characterize
experience-dependent circuit plasticity to understand the processes of learning
and memory formation. Moreover, it is important to study how circuit
connectivity and plasticity in neurological and psychiatric disease states
deviates from that in healthy brains. By understanding the impact of disease on
circuit plasticity, it may be possible to develop therapeutic interventions to
alleviate significant neurological and psychiatric morbidity. In the case of
neural trauma or ischemic injury, where neurons and their connections are lost,
functional recovery relies on neural-circuit repair. Evaluating whether neurons
are reconnected into the local circuitry to re-establish the lost connectivity
is crucial for guiding therapeutic development.</p>
<p>There are
several major technical hurdles for studies aiming to quantify circuit
connectivity. First, the lack of high-specificity circuit stimulation methods
and second, the low throughput of the gold-standard patch-clamp technique for
measuring synaptic events have limited progress in this area. To address these
problems, we first engineered the patch-clamp experimental system to automate
the patching process, increasing the throughput and consistency of patch-clamp
electrophysiology while retaining compatibility of the system for experiments
in <i>ex vivo </i>brain slices. We also took
advantage of optogenetics, the technology that enables control of neural
activity with light through ectopic expression of genetically encoded
photo-sensitive channels in targeted neuronal populations. Combining
optogenetic stimulation of pre-synaptic axonal terminals and whole-cell
patch-clamp recording of post-synaptic currents, we mapped the distribution and
strength of synaptic connections from a specific group of neurons onto a single
cell. With the improved patch-clamp efficiency using our automated system, we
efficiently mapped a significant number of neurons in different experimental
conditions/treatments. This approach yielded large datasets, with sufficient
power to make meaningful comparisons between groups.</p>
<p>Using this
method, we first studied visual experience-dependent circuit plasticity in the
primary visual cortex. We measured the connectivity of local feedback and
recurrent neural projections in a Fragile X syndrome mouse model and their
healthy counterparts, with or without a specific visual experience. We found
that repeated visual experience led to increased excitatory drive onto
inhibitory interneurons and intrinsically bursting neurons in healthy animals.
Potentiation at these synapses was absent or abnormal in Fragile X animals.
Furthermore, recurrent excitatory input onto regular spiking neurons within the
same layer remained stable in healthy animals but was depressed in Fragile X
animals following repeated visual experience. These results support the
hypothesis that visual experience leads to selective circuit plasticity which
may underlie the mechanism of visual learning. This circuit plasticity process
is impaired in a mouse model of Fragile X syndrome. </p>
<p>In a separate
study, in collaboration with the laboratory of Dr. Gong Chen, we applied the
circuit-mapping method to measure the effect of a novel brain-repair therapy on
functional circuit recovery following ischemic injury, which locally kills
neurons and creates a glial scar. By directly reprogramming astrocytes into
neurons within the region of the glial scar, this gene-therapy technology aims
to restore the local circuit and thereby dramatically improve behavioral
function after devastating neurological injury. We found that direct
reprogramming converted astrocytes into neurons, and importantly, we found that
these newly reprogrammed neurons integrated appropriately into the local
circuit. The reprogramming also improved connections between surviving endogenous
neurons at the injury site toward normal healthy levels of connectivity.
Connections formed onto the newly reprogrammed neurons spontaneously remodeled,
the process of which resembled neural development. By directly demonstrating
functional connectivity of newly reprogrammed neurons, our results suggest that
this direct reprogramming gene-therapy technology holds significant promise for
future clinical application to restore circuit connectivity and neurological
function following brain injury.</p>
|
Page generated in 0.0846 seconds