1 |
Evaluating Power Quality in the Microgrid on Arholma IslandNilsson, Anna January 2024 (has links)
The purpose of this thesis is to evaluate a selection of power quality parameters (harmonic distortion and voltage variations) in the microgrid on Arholma Island in the Stockholm archipelago, Sweden. Measurements of harmonic distortion, total harmonic distortion, and voltage magnitudes is evaluated and compared prior to and after the installation of the microgrid. Furthermore, a comparison is made between grid-connected mode and island operation mode where also the frequency is analysed. The measured values are compared against regulatory limits. The microgrid is owned and managed by the company Vattenfall, who provides the data used for the evaluation. The microgrid consists of two battery energy storage systems and a small photovoltaic system. The central energy management system has different use cases, for example peak shaving and voltage regulation. At the time when this thesis is conducted, the microgrid has been up and running continuously for approximately 8 months, from September, 2023 to April, 2024. A power quality meter has been collecting data at the point of common coupling (connection to the mainland) for a period of two years, i.e., from April, 2022, which is one year prior to the installation of the microgrid in mid-April, 2023. The microgrid is also operated in island operation mode for three short periods on April 18, 2024. The data analysis is executed in Excel and Matlab. The results show that all measured harmonics (2nd to 25th), and total harmonic distortion stays well within regulatory limits throughout the whole measuring period. The microgrid does not seem to make the harmonic magnitude increase in general, although there is a slight increase during island operation mode for certain harmonics. Only on one occasion (with the exception of a planned maintenance outage) does the voltage drop below the levels of what is considered as good voltage quality during the two-year measurement period. Also, during island operation mode, the frequency show less variations than during grid-connected mode. / Syftet med detta examensarbete är att utvärdera ett urval av elkvalitetsparametrar (spänningsdistorsion/övertoner och spänningsvariationer) i mikronätet på ön Arholma i Stockholms skärgård, Sverige. Mätdata för övertoner, total övertonsdistorsion och spänningsamplitud utvärderas och jämförs före och efter installationen av mikronätet. Dessutom görs en jämförelse mellan nätanslutet läge och ö-driftläge, där även frekvensen analyseras. De uppmätta värdena jämförs med föreskrivna gränsvärden. Mikronätet ägs och förvaltas av företaget Vattenfall, och tillhandahåller den data som används för utvärderingen. Mikronätet består av två batterilagringssystem och ett litet solcellssystem. Det centrala kontrollsystemet har olika funktioner, till exempel ”peak shaving” och spänningsreglering. Vid t idpunkten då detta examensarbete genomförs har mikronätet varit i drift kontinuerligt i cirka 8 månader, från september 2023 till april 2024. En elkvalitetsmätare har samlat in data vid sammankopplingspunkten mot fastlandet under en period av två år, dvs. från april 2022, vilket är ett år före installationen av mikronätet i mitten av april 2023. Mikronätet körs i ö-drift under tre korta perioder den 18 april 2024. Dataanalysen utförs i Excel och Matlab. Resultaten visar att alla uppmätta övertoner (2:a till och med 25:e) och total övertonsdistorsion håller sig väl inom regulatoriska gränser genom hela mätperioden. Mikronätet verkar inte bidra till att övertonernas magnitud ökar i allmänhet, men en liten ökning för vissa övertoner kan ses i samband med att mikronätet körs i ö-drift. Endast vid ett tillfälle (med undantag för ett planerat underhållsavbrott) under den tvååriga mätperioden sjunker spänningen under nivåerna för vad som anses vara god spänningskvalitet. Resultaten visar även att frekvensen varierar mindre vid ö-drift än när mikronätet är sammankopplat med fastlandsnätet.
|
2 |
Proteção digital de geradores eólicos com conversores de potência de escala completa no contexto das smart grids / Digital protection of wind generators with full- scale power converter in the smart grid contextBataglioli, Rodrigo Pavanello 02 July 2018 (has links)
Considerando condições anormais que o Sistema Elétrico de Potência (SEP) está sujeito, a proteção de seus elementos é um tópico importante. Dentre os equipamentos a serem protegidos, destacam-se os geradores devido a representarem elevado custo de investimento e estarem sujeitos a multas por paradas não programadas. Desta forma, com base em pesquisa bibliográfica, observa-se que não existem estudos abrangentes para a proteção individual de máquinas síncronas aplicadas à geração eólica. Além disso, considerando o contexto das smart grids, a presença de baterias e a possibilidade da operação ilhada podem alterar a dinâmica das situações de falta. Portanto, faz-se necessário um estudo do comportamento dos aerogeradores em situações de falha, sabendo que o esquema de proteção depende do tipo de gerador e da maneira como este está conectado ao SEP. Neste sentido, esta pesquisa propôs incluir uma bateria para operar com um gerador eólico de velocidade variável de forma complementar, suavizando a potência de saída e tornando o sistema de conversão de energia eólica forte o suficiente para operar no modo ilhado. A metodologia estabelece vários tipos de falhas para investigar o comportamento da turbina eólica em tais condições. Para realizar as simulações de falta, foi utilizado um simulador digital de tempo real (RTDS®). Com base nisso, um esquema composto por funções de proteção convencionais foi especificado e testado usando o software MATLAB®. Além disso, simulações em laço fechado foram realizadas com relés comercial e universal. Os resultados obtidos com o esquema proposto são bastante promissores. / Considering abnormal conditions to which the Electric Power System (EPS) may be subjected, the protection of its elements is an important topic. Among the equipments to be protected, the generators are highlighted, because they represent a high investment cost and are subjected to penalties for unscheduled stoppages. Hence, based on literature, it is observed that there are no comprehensive studies and standards for individual protection of Synchronous Generators (SGs) applied to Wind Energy Conversion System (WECS). Furthermore, considering the smart grids context, the presence of batteries and the possibility of island operation may change the dynamic of fault situations. Therefore, it is necessary to study and analyse the behavior of wind turbines in fault situations, knowing that the protection scheme is dependent on the generator type and the way it is connected to the EPS. In order to study these issues, this research proposed to include a battery to operate with a full-variable speed wind generator in a complementary way, smoothing the output power and making the WECS strong enough to operate in the island mode. The methodology establishes several fault types to investigate the wind turbine behavior in such conditions. In order to conduct the fault simulations, a real time digital simulator (RTDS®) was used. Based on this, a scheme composed by conventional protection functions were specified and tested using the MATLAB® software. Furthermore, hardware-in-the-loop simulations were performed with commercial and universal relays. Very good results in favor of the proposed scheme are presented.
|
3 |
Proteção digital de geradores eólicos com conversores de potência de escala completa no contexto das smart grids / Digital protection of wind generators with full- scale power converter in the smart grid contextRodrigo Pavanello Bataglioli 02 July 2018 (has links)
Considerando condições anormais que o Sistema Elétrico de Potência (SEP) está sujeito, a proteção de seus elementos é um tópico importante. Dentre os equipamentos a serem protegidos, destacam-se os geradores devido a representarem elevado custo de investimento e estarem sujeitos a multas por paradas não programadas. Desta forma, com base em pesquisa bibliográfica, observa-se que não existem estudos abrangentes para a proteção individual de máquinas síncronas aplicadas à geração eólica. Além disso, considerando o contexto das smart grids, a presença de baterias e a possibilidade da operação ilhada podem alterar a dinâmica das situações de falta. Portanto, faz-se necessário um estudo do comportamento dos aerogeradores em situações de falha, sabendo que o esquema de proteção depende do tipo de gerador e da maneira como este está conectado ao SEP. Neste sentido, esta pesquisa propôs incluir uma bateria para operar com um gerador eólico de velocidade variável de forma complementar, suavizando a potência de saída e tornando o sistema de conversão de energia eólica forte o suficiente para operar no modo ilhado. A metodologia estabelece vários tipos de falhas para investigar o comportamento da turbina eólica em tais condições. Para realizar as simulações de falta, foi utilizado um simulador digital de tempo real (RTDS®). Com base nisso, um esquema composto por funções de proteção convencionais foi especificado e testado usando o software MATLAB®. Além disso, simulações em laço fechado foram realizadas com relés comercial e universal. Os resultados obtidos com o esquema proposto são bastante promissores. / Considering abnormal conditions to which the Electric Power System (EPS) may be subjected, the protection of its elements is an important topic. Among the equipments to be protected, the generators are highlighted, because they represent a high investment cost and are subjected to penalties for unscheduled stoppages. Hence, based on literature, it is observed that there are no comprehensive studies and standards for individual protection of Synchronous Generators (SGs) applied to Wind Energy Conversion System (WECS). Furthermore, considering the smart grids context, the presence of batteries and the possibility of island operation may change the dynamic of fault situations. Therefore, it is necessary to study and analyse the behavior of wind turbines in fault situations, knowing that the protection scheme is dependent on the generator type and the way it is connected to the EPS. In order to study these issues, this research proposed to include a battery to operate with a full-variable speed wind generator in a complementary way, smoothing the output power and making the WECS strong enough to operate in the island mode. The methodology establishes several fault types to investigate the wind turbine behavior in such conditions. In order to conduct the fault simulations, a real time digital simulator (RTDS®) was used. Based on this, a scheme composed by conventional protection functions were specified and tested using the MATLAB® software. Furthermore, hardware-in-the-loop simulations were performed with commercial and universal relays. Very good results in favor of the proposed scheme are presented.
|
Page generated in 0.1108 seconds