• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 23
  • 14
  • 12
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 196
  • 111
  • 76
  • 72
  • 60
  • 47
  • 45
  • 44
  • 41
  • 37
  • 34
  • 32
  • 30
  • 29
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Islet tissue autotransplantation - harvesting methods and long-term assessment of graft function

Griffin, S. Michael January 1988 (has links)
No description available.
2

Immune Cells, Inflammatory Molecules, and CD40 in Nonhuman Primate Islets of Langerhans

Coffey, Lane Claire Katherine 10 June 2009 (has links)
Type 1 Diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing beta cells in the pancreas. Amelioration of T1D and the prevention of its detrimental complications are possible through islet transplantation, wherein hormone-producing clusters of cells, islets of Langerhans (islets), are separated from the pancreas and transplanted into a diabetic patient. However, alterations due to the effects of organ recovery, cold ischemia time (CIT), and islet isolation may increase the inflammatory and immunogenic properties of these islets, thereby predisposing them to functional impairment and rejection in a transplant. Understanding the inflammatory properties of islets will allow for the development of strategies that decrease early islet loss and effectively enhance engraftment and long-term function. Therefore, the aims of this study were to 1) identify and characterize populations of antigen presenting cells (APC) and other immune cells in nonhuman primate (NHP) islets in situ and after isolation; and 2) characterize the expression and functional role of CD40 and the IFN alpha receptor in NHP islets, including their effects on islet immunogenicity. A surprising result of these studies was that half of the APC present in isolated NHP islets were B lymphocytes. We observed that the number of islet-resident immune cells increased with islet size, and described the localization pattern of these cells within islets. We characterized CD40 expression in NHP islets, demonstrating that multiple CD40 isoforms are expressed, and made the novel finding that functional CD40 is expressed on the somatostatin-producing δ cells. When CD40 was stimulated with its ligand, it induced downstream signaling changes, increased proinflammatory cytokine release, and increased islet immunogenicity. Based on our results, we have hypothesized a model of CD40 signaling in islet δ cells. Microarray analysis revealed expression changes in many inflammatory molecules integral to inflammation, the immune response, and apoptosis in islets that had endured increased CIT, demonstrating the unfavorable conditions created within islets following organ recovery, CIT, and islet isolation. Furthermore, we demonstrated that the IFN alpha receptor is present on isolated NHP islets, and that stimulation with IFN alpha leads to increased proinflammatory cytokine release, surface receptor upregulation, and a decrease in immunogenicity. In summary, in NHP islets we have defined the type and quantity of immune cells, the inflammatory molecules expressed, including CD40 and the IFN alpha receptor, and their downstream functional roles in an immune response.
3

Islet pathobiology in congenital hyperinsulinism in infancy

Han, Bing January 2017 (has links)
Congenital Hyperinsulinism of Infancy (CHI) is a potentially lethal condition caused by excessive, unregulated insulin release from pancreatic β-cells. It is a complex clinical condition and the current understanding of this disease is still not completed. In this thesis, we investigated the disease islet pathobiology from 4 main perspectives; Using nucleomegaly as a novel diagnostic marker; Identifying the mosaic of immature delta-cells in atypical CHI (CHI-A); Assessing the insulin secretory profile at the ultrastructural level; Investigating endocrine cell turnover and the driving force/mechanism behind it. By quantifying the enlarged nuclei in the endocrine pancreas of patients with CHI, we discovered that the increased incidence of nucleomegaly is pathognomic for diffuse CHI (CHI-D). This finding potentially set a novel diagnostic hallmark for intraoperative diagnoses. A characteristic of CHI-A is a combination of active and quiescent islets. The maintained expression of NKX2.2 in somatostatin positive cells suggests an immature delta-cells phenotype in quiescent islets and this is potentially contributing to the pathobiology of CHI-A. By examining the insulin secretory profile at the ultrastructural level, as well as investigating the crucial exocytosis-related genes from both RNA and protein levels, our data suggested a greater secretory capacity in β-cells from focal CHI lesion compared to CHI-D. Despite seeing a maintained potential for proliferative (Ki67) in CHI samples, there was no significant increase in apoptosis rates (cleaved caspase-3) and whole cell mass compared to control samples. Alterations in the cellular localisation of cell cycle regulators are a plausible explanation for these abnormal disease dynamics. These data expanded our knowledge on understanding CHI, and provided us new clues for the phenotypical alterations and pathobiological mechanisms in patients with this disease. Meanwhile, they also provided new insights in the future management of CHI.
4

Microrna 21 targets B Cell Lymphoma 2 (Bcl2) Mrna to increase beta cell apoptosis and exosomal Microrna 21 could serve as a biomarker of developing Type 1 Diabetes Mellitus

Sims, Emily K. January 2018 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The role of beta cell miR-21 in Type 1 Diabetes (T1D) pathophysiology has been controversial. Here, we sought to define the context of beta cell miR-21 upregulation in T1D and the phenotype of beta cell miR-21 overexpression through target identification. Furthermore, we sought to identify whether circulating extracellular vesicle (EV) beta cell-derived miR-21 may reflect inflammatory stress within the islet during T1D development.. Results suggest that beta cell miR-21 is increased in in-vivo models of T1D and cytokine-treated cells/islets. miR-21 overexpression decreased cell count and viability, and increased cleaved caspase-3 levels, suggesting increased cell death. In silico prediction tools identified the anti-apoptotic mRNA B Cell Lymphoma 2 (BCL2) as a conserved miR-21 target. Consistent with this, miR-21 overexpression decreased BCL2 transcript and protein expression, while miR-21 inhibition increased BCL2 protein levels and reduced cleaved caspase-3 levels following cytokine-treatment. miR-21-mediated cell death was abrogated in 828/33 cells, which constitutively overexpress BCL-2. Luciferase assays suggested a direct interaction between miR-21 and the BCL2 3’untranslated region. With miR-21 overexpression, PRP revealed a shift of BCL-2 message toward monosome-associated fractions, indicating inhibition of BCL2 translation. Finally, overexpression in dispersed human islets confirmed a reduction in BCL2 transcripts and increased cleaved caspase 3 production. Analysis of EVs from human beta cells and islets exposed to cytokines revealed a 3-5-fold increase in miR-21. Nanoparticle tracking analysis showed no changes in EV quantity in response to cytokines, implicating specific changes within EV cargo as responsible for the miR-21 increase. Circulating EVs from diabetic non-obese diabetic (NOD) mice displayed progressive increases in miR-21 that preceded diabetes onset. To validate relevance to human T1D, we assayed serum samples collected from 19 pediatric T1D subjects at the time of diagnosis and 16 healthy controls. Consistent with our NOD data, EV miR-21 was increased 5-fold in T1D samples. In conclusion, in contrast to the pro-survival role reported in other systems, our results demonstrate that miR-21 increases beta cell death via BCL2 transcript degradation and inhibition of BCL2 translation. Furthermore, we propose that EV miR-21 may be a promising marker of developing T1D.
5

Plasticity and Aggregation of Juvenile Porcine Islets in Modified Culture: Preliminary Observations

Weegman, Bradley P., Taylor, Michael J., Baicu, Simona C., Mueller, Kate, O’Brien, Timothy D., Wilson, John, Papas, Klearchos K. 14 October 2016 (has links)
Diabetes is a major health problem worldwide, and there is substantial interest in developing xenogeneic islet transplantation as a potential treatment. The potential to relieve the demand on an inadequate supply of human pancreata is dependent upon the efficiency of techniques for isolating and culturing islets from the source pancreata. Porcine islets are favored for xenotransplantation, but mature pigs (>2 years) present logistic and economic challenges, and young pigs (3-6 months) have not yet proven to be an adequate source. In this study, islets were isolated from 20 juvenile porcine pancreata (similar to 3 months; 25 kg Yorkshire pigs) immediately following procurement or after 24 h of hypothermic machine perfusion (HMP) preservation. The resulting islet preparations were characterized using a battery of tests during culture in silicone rubber membrane flasks. Islet biology assessment included oxygen consumption, insulin secretion, histopathology, and in vivo function. Islet yields were highest from HMP-preserved pancreata (2,242 +/- 449 IEQ/g). All preparations comprised a high proportion (>90%) of small islets (<100 mu m), and purity was on average 63 +/- 6%. Morphologically, islets appeared as clusters on day 0, loosely disaggregated structures at day 1, and transitioned to aggregated structures comprising both exocrine and endocrine cells by day 6. Histopathology confirmed both insulin and glucagon staining in cultures and grafts excised after transplantation in mice. Nuclear staining (Ki-67) confirmed mitotic activity consistent with the observed plasticity of these structures. Metabolic integrity was demonstrated by oxygen consumption rates=175 +/- 16 nmol/min/mg DNA, and physiological function was intact by glucose stimulation after 6-8 days in culture. In vivo function was confirmed with blood glucose control achieved in nearly 50% (8/17) of transplants. Preparation and culture of juvenile porcine islets as a source for islet transplantation require specialized conditions. These immature islets undergo plasticity in culture and form fully functional multicellular structures. Further development of this method for culturing immature porcine islets is expected to generate small pancreatic tissue-derived organoids termed "pancreatites," as a therapeutic product from juvenile pigs for xenotransplantation and diabetes research.
6

Phenomenological modeling of the nucleated polymerization of human islet amyloid polypeptide : a combined experimental and theoretical approach

Bailey, James 05 1900 (has links)
The inverse scattering problem is based on the scattering theory in physics, where measured data such as radiation from an object is used to determine the unique structure of the object in question. This approach has been widely successful in fields ranging from geophysics and medical imaging, to quantum field theory. In 1996 Henrik Flyvbjerg suggested that a similar approach could be used to study a reaction far from equilibrium of the self-assembly of a nucleation dependent biopolymer and, under certain conditions, uniquely determine the kinetics of the assembly. Here we use this approach to elucidate the unique structure of human islet amyloid polypeptide, also known as amylin, in-vitro. We use a systematic phenomenological analysis of the amount of monomer in fibril, of amylin, for various initial concentrations from an unstructured monomer pool. Using the assumption that nucleation is the rate-limiting step in fibril formation, we invoke mass action to develop our model. We find that the fibrillogenesis of amylin is well described by a nucleation dependent polymerization event that is characteristic of the sigmoidal shape of the reaction profile generated by our data. Furthermore, we find a second nucleation event is needed to accurately match model predictions to the observed data for the kinetic profiles of fibril formation, and the experimental length distributions of mature fibrils from in-vitro assays. This analysis allows for the theoretical determination of each step of assembly in the nucleation process. Specifically, we find the number of steps to nucleation, the size of each oligomer formed in the nucleation process, the nucleus size, and the elongation kinetics of fibrils. The secondary nucleation process is found to be a fibril dependent surface mediated nucleation event and is similar in reaction order to the primary nucleation step. Model predictions are found to be congruent with experimental assay results of oligomer populations and monomer concentration. We demonstrate that, a persistent oligomer formation is a natural and necessary consequence of nucleated fibril formation, given certain qualitative features of the kinetic profile of fibril formation. Furthermore, the modeling assumptions about monomer and fibril mass are in agreement with experiment.
7

Mesenchymal Stem Cells In Islet Transplantion

Yeung, Telford Y Unknown Date
No description available.
8

Phenomenological modeling of the nucleated polymerization of human islet amyloid polypeptide : a combined experimental and theoretical approach

Bailey, James 05 1900 (has links)
The inverse scattering problem is based on the scattering theory in physics, where measured data such as radiation from an object is used to determine the unique structure of the object in question. This approach has been widely successful in fields ranging from geophysics and medical imaging, to quantum field theory. In 1996 Henrik Flyvbjerg suggested that a similar approach could be used to study a reaction far from equilibrium of the self-assembly of a nucleation dependent biopolymer and, under certain conditions, uniquely determine the kinetics of the assembly. Here we use this approach to elucidate the unique structure of human islet amyloid polypeptide, also known as amylin, in-vitro. We use a systematic phenomenological analysis of the amount of monomer in fibril, of amylin, for various initial concentrations from an unstructured monomer pool. Using the assumption that nucleation is the rate-limiting step in fibril formation, we invoke mass action to develop our model. We find that the fibrillogenesis of amylin is well described by a nucleation dependent polymerization event that is characteristic of the sigmoidal shape of the reaction profile generated by our data. Furthermore, we find a second nucleation event is needed to accurately match model predictions to the observed data for the kinetic profiles of fibril formation, and the experimental length distributions of mature fibrils from in-vitro assays. This analysis allows for the theoretical determination of each step of assembly in the nucleation process. Specifically, we find the number of steps to nucleation, the size of each oligomer formed in the nucleation process, the nucleus size, and the elongation kinetics of fibrils. The secondary nucleation process is found to be a fibril dependent surface mediated nucleation event and is similar in reaction order to the primary nucleation step. Model predictions are found to be congruent with experimental assay results of oligomer populations and monomer concentration. We demonstrate that, a persistent oligomer formation is a natural and necessary consequence of nucleated fibril formation, given certain qualitative features of the kinetic profile of fibril formation. Furthermore, the modeling assumptions about monomer and fibril mass are in agreement with experiment.
9

Application of polymer materials for development of artificial pancreas / 人工膵臓開発における高分子材料の応用

Chen, Hao 26 September 2011 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第16407号 / 工博第3488号 / 新制||工||1527(附属図書館) / 29038 / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 岩田 博夫, 教授 田畑 泰彦, 教授 秋吉 一成 / 学位規則第4条第1項該当
10

Phenomenological modeling of the nucleated polymerization of human islet amyloid polypeptide : a combined experimental and theoretical approach

Bailey, James 05 1900 (has links)
The inverse scattering problem is based on the scattering theory in physics, where measured data such as radiation from an object is used to determine the unique structure of the object in question. This approach has been widely successful in fields ranging from geophysics and medical imaging, to quantum field theory. In 1996 Henrik Flyvbjerg suggested that a similar approach could be used to study a reaction far from equilibrium of the self-assembly of a nucleation dependent biopolymer and, under certain conditions, uniquely determine the kinetics of the assembly. Here we use this approach to elucidate the unique structure of human islet amyloid polypeptide, also known as amylin, in-vitro. We use a systematic phenomenological analysis of the amount of monomer in fibril, of amylin, for various initial concentrations from an unstructured monomer pool. Using the assumption that nucleation is the rate-limiting step in fibril formation, we invoke mass action to develop our model. We find that the fibrillogenesis of amylin is well described by a nucleation dependent polymerization event that is characteristic of the sigmoidal shape of the reaction profile generated by our data. Furthermore, we find a second nucleation event is needed to accurately match model predictions to the observed data for the kinetic profiles of fibril formation, and the experimental length distributions of mature fibrils from in-vitro assays. This analysis allows for the theoretical determination of each step of assembly in the nucleation process. Specifically, we find the number of steps to nucleation, the size of each oligomer formed in the nucleation process, the nucleus size, and the elongation kinetics of fibrils. The secondary nucleation process is found to be a fibril dependent surface mediated nucleation event and is similar in reaction order to the primary nucleation step. Model predictions are found to be congruent with experimental assay results of oligomer populations and monomer concentration. We demonstrate that, a persistent oligomer formation is a natural and necessary consequence of nucleated fibril formation, given certain qualitative features of the kinetic profile of fibril formation. Furthermore, the modeling assumptions about monomer and fibril mass are in agreement with experiment. / Science, Faculty of / Mathematics, Department of / Graduate

Page generated in 0.0349 seconds