• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of amylin in Alzheimer's disease

Allsop, Ben January 2017 (has links)
Type II diabetes mellitus (T2D) and Alzheimer's disease (AD) share aetiology and have a high incidence of co-morbidity. Evidence suggests that both diseases are caused by the pathogenic aggregation of an intrinsically disordered native amyloid peptide. Furthermore, T2D and AD share risk factors such as age, obesity and vascular health. Recent studies demonstrate that amylin, an amyloidogenic pancreatic hormone deposited in the pancreas in T2D, is also deposited in the brain in AD. We hypothesised that amylin directly contributes to AD through deposition in the brain and activation of pathogenic signalling cascades. We provide evidence to validate that amylin is deposited in the brain parenchyma and vasculature. Furthermore, we present data demonstrating amylin (IAPP) expression in the brain is significantly elevated in AD; and that amylin treatment increases amyloid-beta (AB) secretion in neuronal culture. Soluble oligomeric species of AB cause AD by initiation of downstream signalling cascades that dysregulate kinase activity, promote tau phosphorylation and result in neuronal death. One such pathway involves AB oligomer activation of the Src-family kinase Fyn, through binding to the cellular prion protein (PrPC) receptor complex. We provide evidence that amylin activates Fyn in neuroblastoma and stem cell derived neurons, this activation is possibly mediated through PrPC. Together the data presented in this thesis demonstrate multiple modes of action whereby amylin may directly propagate or indirectly exacerbate AD-associated processes. Amylin aggregation, deposition, up-regulation and signalling should be considered one of several links between T2D and AD. The pathogenic actions of AB and amylin are mediated by oligomer species. Therefore therapeutics which prevent oligomerisation or oligomer action may be valuable in AD and T2D. One such class of therapeutic are flavonoids. Our collaborators have recently demonstrated the flavonoids rutin and quercetin reduce amylin aggregation and extend lifespan in diabetic animal models. As a result of this we investigated the anti-amyloidogenic and anti-oligomeric properties of the flavonoid quercetin against AB. Quercetin treatment prevented AB oligomerisation, cell binding of pre-formed AB oligomers and also reduced APP processing in cell models. These data suggest quercetin is a multimodal therapeutic with potential utility in AD and T2D and should be explored for further drug development.
2

Insights into Mechanisms of Amyloid Toxicity:  Molecular Dynamics Simulations of the Amyloid andbeta-peptide (Aandbeta) and Islet Amyloid Polypeptide (IAPP)

Brown, Anne M. 07 April 2016 (has links)
Aggregation of proteins into amyloid deposits is a common feature among dozens of diseases. Two such diseases that feature amyloid deposits are Alzheimer's disease (AD) and type 2 diabetes (T2D). AD toxicity has been associated with the aggregation and accumulation of the amyloid β-peptide (Aβ); Aβ exerts its toxic effects through interactions with neuronal cell membranes. A characteristic feature of T2D is the deposition of the islet amyloid polypeptide (IAPP) in the pancreatic islets of Langerhans. It is currently unknown if IAPP aggregation is a cause or consequence of T2D, but it does lead to β-cell dysfunction and death, exacerbating the effects of diabetes. Characterizing the fundamental interactions between both Aβ and IAPP with lipid membranes and in solution will give greater insight into mechanisms of toxicity exhibited by amyloid proteins. In this work, molecular dynamics (MD) simulations were used to study the secondary, tertiary, and quatnary structure of Aβ and IAPP, in addition to peptide-membrane interactions and membrane perturbation as independently caused by both peptides. Studies were conducted to address the following questions: (1) what influence do solution conditions and oxidation state have on monomeric Aβ] (2) how and in what way does monomeric Aβ interact with model lipid membranes and what role does sequence play on these peptide-membrane interactions; (3) can MD simulations be utilized to understand Aβ tetramer formation, rearrangement, and tetramer-membrane interactions; (4) how does IAP interact with model membranes and how does that vary from non-toxic (rat) IAPP peptide-membrane interactions. These studies led to conclusions that showed variance in lipid affinity and degree of perturbation as based on peptide sequence, in addition to insight into the type of perturbation caused to membranes by these amyloid peptides. Understanding the differences in peptide-membrane interactions of amyloidogenic and non-amyloidogenic (rat) peptides gave insight into the overall mechanism of amyloidogenicity, leading to the detection of specific amino acids essential in peptide-membrane perturbation. These residues can then be targeted for novel therapeutic design to attenuate the perturbation and potential cell death as caused by these peptides. / Ph. D.
3

Investigating the Electrostatic Properties and Dynamics of Amyloidogenic Proteins with Polarizable Molecular Dynamics Simulations

Davidson, Darcy Shanley 14 April 2022 (has links)
Amyloidogenic diseases, such as Alzheimer's disease (AD) and Type II Diabetes (T2D), are characterized by the accumulation of amyloid aggregates. Despite having very different amino-acid sequences, the underlying amyloidogenic proteins form similar supramolecular fibril structures that are highly stable and resistant to physical and chemical denaturation. AD is characterized by two toxic lesions: extracellular amyloid β-peptide (Aβ) plaques and intracellular neurofibrillary tangles composed of microtubule-associated protein tau. Similarly, a feature of T2D is the deposition of islet amyloid polypeptide (IAPP) aggregates in and around the pancreas. The mechanisms by which Aβ, tau, and IAPP aggregate, and cause cell death is unknown; thus, gaining greater insight into the stabilizing forces and initial unfolding events is crucial to our understanding of these amyloidogenic diseases. This work uses molecular dynamics (MD) simulations to study the secondary, tertiary, and quaternary structure of Aβ, tau, and IAPP. Specifically, this work used the Drude polarizable force field (FF), which explicitly represents electronic polarization allowing charge distributions to change in response to perturbations in local electric fields. This model allows us to describe the role charge plays on protein folding and stability and how perturbations to the charge state drive pathology. Studies were conducted to address the following questions: 1) What are the stabilizing forces of fibril and oligomeric structures? 2) How do charge-altering mutations modulate the conformational ensemble and thermodynamic properties of Aβ? 3) How do charge-altering post-translational modifications of Aβ and tau modulate changes in the conformational ensembles? These studies establish that shifts in local microenvironments play a role in fibril and oligomer stability. Furthermore, these studies found that changes in protein sequence and charge are sufficient to disrupt and change the secondary and tertiary structure of these amyloidogenic proteins. Overall, this dissertation describes how charge modulates protein unfolding and characterizes the mechanism of those changes. In the long term, this work will help in the development of therapeutics that can target these changes to prevent protein aggregation that leads to cell death. / Doctor of Philosophy / Protein aggregation is the hallmark of many chronic diseases, such as Alzheimer's disease (AD) and Type II Diabetes (T2D). The formation of two toxic aggregates: amyloid β-peptide (Aβ) plaques and neurofibrillary tangles composed of microtubule-associated protein tau are some of the key characteristics of AD. In addition, the formation of islet amyloid polypeptide (IAPP) aggregates in the pancreas is thought to play a role in the development of T2D. The pathways by which the proteins Aβ, tau, and IAPP aggregate are unknown; thus, gaining a greater insight into the properties that may cause these diseases is necessary to develop treatments. By studying these proteins at the atomistic level, we can understand how small changes to these proteins alter how they misfold in a way that promotes toxicity. Herein, we used a computational technique called molecular dynamics (MD) simulations to gain new insights into how protein structure changes. We explored the dynamics of these proteins and investigated the role that charge plays in protein folding and described how charge modulates protein folding and characterized the mechanism of those changes. This work serves as a characterization of protein folding and sets the ground for future structural studies and drug development.
4

Caractérisation du rôle de l’amyline (IAPP) dans le diabète de type 2 : études de dérivés peptidiques et de composés inhibiteurs de la formation d’amyloïde

Fortin, Jessica 06 1900 (has links)
L’amyloïdose, une maladie progressive et incurable, implique une vaste panoplie de pathologies et de pathogénèses, qui est expliquée par la grande variabilité biologique et structurale des protéines responsables de la formation des dépôts d’amyloïde. L’amyline (polypeptide amyloïde des îlots pancréatiques, IAPP) est une protéine très susceptible de subir des changements de conformation impliquant les feuillets bêta et conférant aussi des propriétés physicochimiques distinctes. Cette protéine prend alors une forme fibrillaire et se dépose dans les îlots de Langerhans chez les humains atteints de diabète de type 2 ou d’insulinome. Ces dépôts d’amyloïde pancréatique (AIAPP) ont été décrits chez certaines espèces animales telles que les félins domestiques, les grands félins, le raton laveur et les primates non humains. La formation de dépôts d’amyloïde contribue à la pathogénèse du diabète de type 2, mais les mécanismes qui induisent la conversion de l’amyline (IAPP) en amyloïde (AIAPP) ne sont pas complètement compris. Les hypothèses du projet sont que certaines variations présentes dans les séquences peptidiques de l’IAPP provenant de différentes espèces animales jouent un rôle critique pour la formation de fibrilles et que plusieurs composés chimiques aromatiques/phénoliques sont capables d’abroger la formation de dépôts d’amyloïde. Le projet de recherche consiste donc à caractériser la propension des différentes isoformes animales d’IAPP à former de l’amyloïde in vitro afin d’identifier les acides aminés jouant un rôle clé dans cette transformation structurale et ultimement d’inhiber la formation d’amyloïde pancréatique. Le projet se divise en deux volets principaux. Le premier consiste à identifier les différentes séquences peptidiques de l’IAPP retrouvées chez les espèces animales. L’objectif est d’identifier les acides aminés jouant un rôle clé dans la formation d’amyloïde. Le gène de l’IAPP a été séquencé chez plus d’une quarantaine d’espèces. Le potentiel d’agrégation des séquences obtenues a été simulé à l’aide d’outils bioinformatique. Une librairie de 23 peptides a été commandée afin de procéder à des analyses physicochimiques in vitro permettant d’évaluer le potentiel amyloïdogénique (test fluorimétrique à la thioflavine T, essai de liaison au rouge Congo, dichroïsme circulaire, microscopie électronique à transmission) et cytotoxique (sur une lignée cellulaire provenant d’insulinome : INS-1). Les analyses effectuées à partir de la librairie constituée de 23 peptides ont permis d’identifier trois séquences ne formant pas d’amyloïde et qui proviennent des espèces animales suivantes : le tamarin lion doré (Leontopithecus rosalia), le grand dauphin (Tursiops truncatus) et l’alpaga (Vicugna pacos). Un site potentiellement critique est le segment 8-20 présentant le motif NFLVH qui ne forme plus d’amyloïde lorsqu’il est remplacé par le motif DFLGR ou KFLIR. Les acides aminés 29P, 14K et 18R sont également impliqués dans l’inhibition de la transformation structurale en fibrille. La dernière partie du projet consiste à inhiber la formation de l’amyloïde en utilisant des composés chimiques commercialisés (hypoglycémiants, anti-inflammatoires non stéroïdiens) ou nouvellement synthétisés dans notre laboratoire (les aryles éthyles urées). Un criblage d’une soixantaine de composés chimiques a été conduit dans cette étude. Leur efficacité a été testée sur l’IAPP humaine, qui possède un fort potentiel amyloïdogénique. Les techniques utilisées sont les mêmes que celles exploitées précédemment. L’essai de liaison croisée photo-induite ("photo-induced cross-linking of unmodified proteins", PICUP) a été réalisé afin d’étudier les formes intermédiaires (monomères, oligomères). Un total de 11 composés chimiques a démontré un potentiel à inhiber l’agrégation des fibrilles. Pour la classe des hypoglycémiants, le glyburide, le répaglinide et la troglitazone ont montré l’activité thérapeutique la plus élevée pour retarder et réduire la formation de fibrilles. Les anti-inflammatoires antiamyloïdogènes actifs incluaient le diclofenac, le méloxicam, le phénylbutazone, le sulindac et le ténoxicam. Les aryles étyles urées les plus intéressantes étaient la EU-362 et la EU-418. Tous ces composés ont conféré une protection cellulaire contre l’activité cytotoxique des fibrilles. Les molécules actives possèdent des éléments structuraux communs tels des substituants donneurs d’électrons (alcool, amine, halogène) sur un noyau benzène. En conclusion, ce projet de recherche a permis de caractériser l’IAPP chez diverses espèces animales, dont plusieurs chez lesquelles elle n’avait pas encore été décrite, de déterminer les sites jouant un rôle clé dans sa transformation en amyloïde et, ultimement, de tester le potentiel thérapeutique de nouveaux agents antiamyloïdogènes dans le diabète de type 2. Nous espérons que ce projet ouvrira ainsi la porte à de nouvelles stratégies de traitement. / Amyloidosis is a progressive and, as of now, incurable disease caused by the deposition of insoluble proteins. Amyloid research over the past decades focused on the characterization of the substantive biological variability of amyloid deposits. Amyloidosis encompasses a diversity of pathological manifestations, explained by the diversity of underlying causal proteins. In the pancreas of susceptible species, islet amyloid polypeptide (IAPP) is a precursor for an amyloid protein (AIAPP), which has a characteristic fibrillar structure and resistance to physical agents. This folded protein deposits in the islets of Langerhans of patients with type 2 diabetes or islet cell tumors (insulinoma). Amyloid deposits have also been well characterized, anatomically, in feline and non-human primate species. Amyloid fibril formation contributes to the pathogenesis of diabetes mellitus but the precise pathophysiologic factors involved in the fibrillization of IAPP as well as resultant islet injury remain to be elucidated. Further understanding of the causative factors in the fibrillogenesis of IAPP will be requisite in the development of therapeutic strategies to disrupt the amyloidosis process. This project hypothesizes that the specific variations found in IAPP peptide sequences among different animal species are critical for IAPP fibrillization. Also, some aromatic/polyphenolic compounds can abrogate fibrillization. The main objective forms the basis for development of new therapeutic tactics to impede amyloid formation and associated cellular injury. Thus this project has two specific aims. The first specific aim was to identify critical variations in IAPP amino acid sequences from different animal species and to assess their amyloidogenic potential. To accomplish this, the IAPP gene was isolated and sequenced from paraffin-embedded tissues from various animals (40 species). The aggregation potency was assessed for each sequence using in silico analysis. A library of 23 peptides was prepared from sequences that were distinctly different and their amyloidogenic potential was assessed in vitro using physicochemical analysis (thioflavin-T assay, Congo red binding assay, far-UV circular dichroism, transmission electron microscopy) and cytotoxicity assays (insulinoma cell line INS-1). Among this peptide library, three were non-amyloidogenic and corresponded to the following animal species: golden lion tamarin (Leontopithecus rosalia), commun bottlenose dolphin (Tursiops truncates) and alpaca (Vicugna pacos). Segment 8-20 of the peptide was critical for amyloid formation and the substitution of the NFLVH motif found in this region by a DFLGR or KFLIR motif impeded fibrillization. The amino acids 29P, 14K and 18R were also demonstrated to abrogate fibril formation. The second objective consisted in abrogating IAPP fibrillogenesis using conceptualized aromatic/polyphenolic structures, specifically hypoglycemic, non-steroidal anti-inflammatory and aryl ethyl urea agents. This part of the project involved molecular screening of more than 60 compounds. Their efficacy at inhibiting amyloid formation was assessed in vitro on human IAPP, which exhibits the highest amyloidogenic potential. Techniques included the above-mentioned methods, with the addition of photo-induced cross-linking of unmodified proteins (PICUP). A total of 11 compounds showed potential in abrogating IAPP aggregation. Among the hypoglycemic agents evaluated, glyburide, repaglinide and troglitazone showed the highest potency in reducing fibril formation. The NSAIDs that displayed anti-amyloidogenic activity were diclofenac, meloxicam, phenylbutazone, sulindac and tenoxicam. EU-362 and EU-418 were the hit compounds resulting from the screening of the aryl ethyl urea (EU) class. Additionally, these anti-amyloidogenic molecules conferred a protection against fibril cytotoxicity. All of the active molecules bear a commun motif composed of benzene ring with electron donor moieties, such as alcohol, amine or halide. To conclude, this project characterized IAPP in several animal species in which it has not been previously described and improves our understanding of the amyloidogenesis process. Moreover, the therapeutic potential of hypoglycemic, non-steroidal anti-inflammatory and aryl ethyl ureas agents as anti-amyloidogenic compounds was evaluated. It is conceivable that the additional information hereby gained on the regulation of amyloidogenesis may point towards new therapeutic strategies for diabetic patients.

Page generated in 0.0475 seconds