• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-Situ Testing of a Carbon/Epoxy IsoTruss Reinforced Concrete Foundation Pile

Richardson, Sarah 14 April 2006 (has links) (PDF)
This thesis focuses on the field performance of IsoTruss®-reinforced concrete beam columns for use in driven piles. Experimental investigation included one instrumented carbon/epoxy IsoTruss®-reinforced concrete pile (IRC pile) and one instrumented steel-reinforced concrete pile (SRC pile) which were driven into a clay profile at a test site. These two piles, each 30 ft (9 m) in length and 14 in (36 cm) in diameter, were quasi-statically loaded laterally until failure. Behavior was predicted using three different methods: 1) a commercial finite difference-based computer program called Lpile; 2) a Winkler foundation model; and, 3) a simple analysis based on fundamental mechanics of materials principles. Both Lpile and Winkler foundation model predictions concluded that the IRC pile should hold approximately twice the load of the SRC pile. Applying mechanics of materials principles found the predicted stiffness of the piles to be consistent with the laboratory results. Due to unresolveable errors, experimental field test data for the SRC pile is inconclusive. However, analysis predictions in conjunction with field test data for the IRC pile show that the IRC pile should perform similar to predictions and laboratory test results. Therefore, IsoTruss® grid-structures are a suitable alternative to steel as reinforcement in driven piles.

Page generated in 0.0245 seconds