• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O índice de Poincaré-Hopf e generalizações no caso singular / The Poincaré-Hopf index and generalizations in singular case

Dalbelo, Thaís Maria 25 February 2011 (has links)
Neste trabalho,estudamos o índice de Poincaré-Hopf, definido para singularidades isoladas de campos de vetores sobre variedades diferenciáveis. Além disso, investigamos algumas definições de índices de campos de vetores definido sem variedades singulares, como o índice de Schwartz e o índice GSV. Estudaremos estes invariantes no caso específico em que (V; 0) é um germe de uma interseção completa com singularidade isolada na origem / In this work, we study thePoincaré-Hopf index, defined for isolated singularities of vector fields on manifolds. Moreover, we investigate some definitions of indices of vector fields defined on singular varieties, as the Schwartz index and the GSV index. We study these invariants in the case where (V; 0) is a germ of a complete intersection with an isolated singularity at the origin
2

O índice de Poincaré-Hopf e generalizações no caso singular / The Poincaré-Hopf index and generalizations in singular case

Thaís Maria Dalbelo 25 February 2011 (has links)
Neste trabalho,estudamos o índice de Poincaré-Hopf, definido para singularidades isoladas de campos de vetores sobre variedades diferenciáveis. Além disso, investigamos algumas definições de índices de campos de vetores definido sem variedades singulares, como o índice de Schwartz e o índice GSV. Estudaremos estes invariantes no caso específico em que (V; 0) é um germe de uma interseção completa com singularidade isolada na origem / In this work, we study thePoincaré-Hopf index, defined for isolated singularities of vector fields on manifolds. Moreover, we investigate some definitions of indices of vector fields defined on singular varieties, as the Schwartz index and the GSV index. We study these invariants in the case where (V; 0) is a germ of a complete intersection with an isolated singularity at the origin
3

Trace au bord de solutions d'équations de hamilton-Jacobi elliptiques et trace initiale de solutions d'équations de la chaleur avec absorption sur-linéaire / Boundary trace of solutions to elliptic hamilton-Jacobi equations and initial trace of solutions to heat equations with super linear absorption

Nguyen, Phuoc Tai 02 February 2012 (has links)
Cette thèse est constituée de trois parties. Dans la première partie, on s’intéresse au problème de trace au bord d’une solution positive de l’équation (E1) - Δu + g(∇u) = 0 dans un domaine borné Ω. Si g(r) ≥ rq avec q > 1, on prouve que toute solution positive de (E1)admet une trace au bord considérée comme une mesure de Borel régulière. Si g(r) = rq avec1 < q < qc = N+1/N , on montre l’existence d’une solution positive dont la trace au bord est une mesure de Borel régulière. Si g(r) = rq avec qc ≤ q < 2, on établit une condition nécessaire de résolution en terme de capacité de Bessel C2-q/q ,q’ . On étudie aussi des ensembles éliminables au bord pour des solutions modérées et sigma-modérées. La deuxième partie est consacrée à étudier la limite, lorsque k → ∞, de solutions d’équation ∂tu - Δu + f(u) = 0 dans ℝN × (0,∞) avec donnée initiale kδ0. On prouve qu’il existe essentiellement trois types de comportement possible et démontre un résultat général d’existence de trace initiale et quelques résultats d’unicité et de non-unicité de solutions dont la donnée initiale n’est pas bornée. Dans la troisième partie, on considère l’équation ∂tu - Δu + f(u) = 0 dans ℝN × (0,∞) où p > 1. Si p > 2N/N+1, on fournit une condition suffisante portant sur f pour l’existence et l’unicité des solutions fondamentales et on étudie la limite lorsque k → ∞. On donne aussi de nouveaux résultats de non-unicité de solutions avec donnée initiale non bornée. Si p ≥ 2, on prouve que toute solution positive admet une trace initiale dans la classe des mesures de Borel régulières positives. Finalement on applique les résultats ci-dessus au cas f(u) = uα lnβ(u + 1) avec α,β > 0. / This thesis is divided into three parts. In the first part, we study the boundary trace of positive solutions of the equation (E1) - Δu + g(∇u) = 0 in a bounded domain . When g(r) ≥ rq with q > 1, we prove that any positive function of (E1) admits a boundary trace which is an outer regular Borel measure. When g(r) ≥ rq with 1 < q < qc = N+1/N, we prove the existence of a positive solution with a general outer regular Borel measure as boundary trace.When g(r) ≥ rq with qc ≤ q < 2, we establish a necessary condition for solvability in term of the Bessel capacity C2-q/q ,q’ . We also study boundary removable sets for moderate and sigma-moderate solutions. The second part is devoted to investigate the limit, when k → ∞, of the solutions of ∂tu - Δu + f(u) = 0 in ℝN × (0,∞) with initial data kδ0. We prove that there exist essentially three types of possible behaviour and provide a new and more general construction of the initial trace and some uniqueness and non-uniqueness results for solutions with unbounded initial data. In the third part, we consider the equation ∂tu - Δu + f(u) = 0 in ℝN × (0,∞) where p > 1. If p > 2N/N+1we provide a sufficient condition on f for existence and uniqueness of the fundamental solutions and we study their limit when k → ∞. We also give new results dealing with non uniqueness for the initial value problem with unbounded initial data. If p ≥ 2, we prove that any positive solution admits an initial trace in the class of positive Borel measures. Finally we apply the above results to the case f(u) = uα lnβ(u + 1) with α,β > 0.

Page generated in 0.1071 seconds