• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Números de Milnor e obstrução de Euler / Milnor numbers and Euler obstruction

Menegon Neto, Aurelio 27 June 2007 (has links)
Neste trabalho, definimos a obstrução local de Euler de um espaço analítico complexo singular (X, \'x IND.0\'), denotada por Eu(X, \'x IND.0\'), e a obstrução local de Euler de uma função holomorfa f definida neste espaço, com uma singularidade isolada em \'x IND. 0\', denotada por \'Eu IND. f\' (X, \'x IND.0\'); e apresentamos duas fórmulas para seus respectivos cálculos. Em seguida, através de uma abordagem geométrica, determinamos as relações entre \'Eu IND. f\' (X,\'x IND.0\') e algumas generalizações do número de Milnor para funções em espaços singulares / In this work we define the local Euler obstruction of a complex analytic singularity (X, \'x IND.0\'), denoted Eu(X, \'x IND.0\'), and the local Euler obstruction of a holomorphic function f defined on this space, with an isolated singularity at \'x IND. 0\', denoted \'Eu IND. f\' (X, \'x IND.0\'); and we present two formulas for their respective calculations. Next, using a geometric approach, we determine the relations between \'Eu IND.f\' (X, \'x IND.0\') and several generalizations of the Milnor number for functions on singular spaces
2

Números de Milnor e obstrução de Euler / Milnor numbers and Euler obstruction

Aurelio Menegon Neto 27 June 2007 (has links)
Neste trabalho, definimos a obstrução local de Euler de um espaço analítico complexo singular (X, \'x IND.0\'), denotada por Eu(X, \'x IND.0\'), e a obstrução local de Euler de uma função holomorfa f definida neste espaço, com uma singularidade isolada em \'x IND. 0\', denotada por \'Eu IND. f\' (X, \'x IND.0\'); e apresentamos duas fórmulas para seus respectivos cálculos. Em seguida, através de uma abordagem geométrica, determinamos as relações entre \'Eu IND. f\' (X,\'x IND.0\') e algumas generalizações do número de Milnor para funções em espaços singulares / In this work we define the local Euler obstruction of a complex analytic singularity (X, \'x IND.0\'), denoted Eu(X, \'x IND.0\'), and the local Euler obstruction of a holomorphic function f defined on this space, with an isolated singularity at \'x IND. 0\', denoted \'Eu IND. f\' (X, \'x IND.0\'); and we present two formulas for their respective calculations. Next, using a geometric approach, we determine the relations between \'Eu IND.f\' (X, \'x IND.0\') and several generalizations of the Milnor number for functions on singular spaces
3

Do número de Milnor ao número de Milnor de Lê / From Milnor number to the Lê\'s Milnor number

Ruiz, Camila Mariana 25 July 2011 (has links)
Neste trabalho,apresentamos um breve compêndio sobre o estudo topológico das fibras de Milnor. Abordamoso caso clássico, estudado por J. Milnor, e a generalização apresentada por Lê D. T. para o caso de germes de funções analíticas definidas em variedades singulares. Nestas duas situações, os resultados principais tratam de germes de funções com singularidades isoladas / In this work, we present a brief compendium about the topological study of J. Milnor fibers. We address the classic case, studied by Milnor, and the generalization presented by Lê D. T. for the case of germs of analytic functions defined on singular varieties. In both situations, the main results deal with germs of functions with isolated singularities
4

Do número de Milnor ao número de Milnor de Lê / From Milnor number to the Lê\'s Milnor number

Camila Mariana Ruiz 25 July 2011 (has links)
Neste trabalho,apresentamos um breve compêndio sobre o estudo topológico das fibras de Milnor. Abordamoso caso clássico, estudado por J. Milnor, e a generalização apresentada por Lê D. T. para o caso de germes de funções analíticas definidas em variedades singulares. Nestas duas situações, os resultados principais tratam de germes de funções com singularidades isoladas / In this work, we present a brief compendium about the topological study of J. Milnor fibers. We address the classic case, studied by Milnor, and the generalization presented by Lê D. T. for the case of germs of analytic functions defined on singular varieties. In both situations, the main results deal with germs of functions with isolated singularities
5

Campos de vetores em variedades singulares / Vector fields on singular varieties

Nakajima, Evandro Alves 23 September 2013 (has links)
Neste trabalho estudamos índices de campos de vetores em variedades regulares e em variedades com singularidades isoladas. O principal resultado e o Teorema de Poincaré-Hopf que relaciona a característica de Euler de uma variedade com o índice de Poincaré-Hopf do campo. Para intersecções completas com singularidades isoladas, vemos também algumas variações deste teorema que relacionam a característica de Euler com o índice de Schwartz, o índice GSV e o número de Milnor da fibra genérica / In this work we study some indices of vector fields on regular manifolds, and on manifolds with isolated singularity. The main result is the Poincare-Hopf Theorem, which connects the Euler characteristic with the Poincare-Hopf index of the field. For complete intersections with isolated singularities, we also study some variations of this theorem, which connects the Euler characteristic with the Schwartz index, the GVS index and the Milnor number of the generic fiber
6

Campos de vetores em variedades singulares / Vector fields on singular varieties

Evandro Alves Nakajima 23 September 2013 (has links)
Neste trabalho estudamos índices de campos de vetores em variedades regulares e em variedades com singularidades isoladas. O principal resultado e o Teorema de Poincaré-Hopf que relaciona a característica de Euler de uma variedade com o índice de Poincaré-Hopf do campo. Para intersecções completas com singularidades isoladas, vemos também algumas variações deste teorema que relacionam a característica de Euler com o índice de Schwartz, o índice GSV e o número de Milnor da fibra genérica / In this work we study some indices of vector fields on regular manifolds, and on manifolds with isolated singularity. The main result is the Poincare-Hopf Theorem, which connects the Euler characteristic with the Poincare-Hopf index of the field. For complete intersections with isolated singularities, we also study some variations of this theorem, which connects the Euler characteristic with the Schwartz index, the GVS index and the Milnor number of the generic fiber
7

O índice de Poincaré-Hopf e generalizações no caso singular / The Poincaré-Hopf index and generalizations in singular case

Dalbelo, Thaís Maria 25 February 2011 (has links)
Neste trabalho,estudamos o índice de Poincaré-Hopf, definido para singularidades isoladas de campos de vetores sobre variedades diferenciáveis. Além disso, investigamos algumas definições de índices de campos de vetores definido sem variedades singulares, como o índice de Schwartz e o índice GSV. Estudaremos estes invariantes no caso específico em que (V; 0) é um germe de uma interseção completa com singularidade isolada na origem / In this work, we study thePoincaré-Hopf index, defined for isolated singularities of vector fields on manifolds. Moreover, we investigate some definitions of indices of vector fields defined on singular varieties, as the Schwartz index and the GSV index. We study these invariants in the case where (V; 0) is a germ of a complete intersection with an isolated singularity at the origin
8

O índice de Poincaré-Hopf e generalizações no caso singular / The Poincaré-Hopf index and generalizations in singular case

Thaís Maria Dalbelo 25 February 2011 (has links)
Neste trabalho,estudamos o índice de Poincaré-Hopf, definido para singularidades isoladas de campos de vetores sobre variedades diferenciáveis. Além disso, investigamos algumas definições de índices de campos de vetores definido sem variedades singulares, como o índice de Schwartz e o índice GSV. Estudaremos estes invariantes no caso específico em que (V; 0) é um germe de uma interseção completa com singularidade isolada na origem / In this work, we study thePoincaré-Hopf index, defined for isolated singularities of vector fields on manifolds. Moreover, we investigate some definitions of indices of vector fields defined on singular varieties, as the Schwartz index and the GSV index. We study these invariants in the case where (V; 0) is a germ of a complete intersection with an isolated singularity at the origin

Page generated in 0.0591 seconds