Spelling suggestions: "subject:"campos dde vetores"" "subject:"campos dee vetores""
1 |
Bifurcações genéricas e relações de equivalência em campos de vetores suaves por partes / Generic bifurcations and equivalence relations in piecewise smooth vector fieldsPerez, Otávio Henrique [UNESP] 23 February 2017 (has links)
Submitted by Otávio Henrique Perez null (otavio_perez@hotmail.com) on 2017-03-03T20:13:38Z
No. of bitstreams: 1
DissertacaoOtavioHenriquePerez.pdf: 2570606 bytes, checksum: dd0f73a1627a83d453f101ef3a973d23 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-09T17:45:41Z (GMT) No. of bitstreams: 1
perez_oh_me_sjrp.pdf: 2570606 bytes, checksum: dd0f73a1627a83d453f101ef3a973d23 (MD5) / Made available in DSpace on 2017-03-09T17:45:41Z (GMT). No. of bitstreams: 1
perez_oh_me_sjrp.pdf: 2570606 bytes, checksum: dd0f73a1627a83d453f101ef3a973d23 (MD5)
Previous issue date: 2017-02-23 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho iremos abordar aspectos qualitativos e geométricos a respeito de campos de vetores suaves por partes. Nosso foco será estudar bifurcações locais e globais de codimensão um e dois e também algumas relações de equivalência para campos vetoriais suaves por partes definidos no plano. Classificaremos e caracterizaremos bifurcações genéricas por meio do retrato de fase e do diagrama de bifurcação dos campos envolvidos. Também faremos uma breve introdução sobre Sistemas Slow-Fast. / In this work we study qualitative and geometric aspects of piecewise smooth vector fields. Our focus is to study local and global bifurcations of codimension one and two and some equivalence relations for piecewise smooth vector fields defined on the plane. We will classify and characterize generic bifurcations using the phase portrait and the bifurcation diagram of the vector fields involved. We also incorporate a brief introduction about Slow-Fast Systems. / FAPESP: 2014/18707-6
|
2 |
Resolubilidade local para duas classes de campos de vetores suaves complexosNunes, Luciele Rodrigues 28 July 2016 (has links)
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-10-10T13:36:29Z
No. of bitstreams: 1
TeseLRN.pdf: 844972 bytes, checksum: 5f5a562bf3f0ee916687c9fec49d5fec (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:46:25Z (GMT) No. of bitstreams: 1
TeseLRN.pdf: 844972 bytes, checksum: 5f5a562bf3f0ee916687c9fec49d5fec (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:46:31Z (GMT) No. of bitstreams: 1
TeseLRN.pdf: 844972 bytes, checksum: 5f5a562bf3f0ee916687c9fec49d5fec (MD5) / Made available in DSpace on 2016-10-20T19:46:37Z (GMT). No. of bitstreams: 1
TeseLRN.pdf: 844972 bytes, checksum: 5f5a562bf3f0ee916687c9fec49d5fec (MD5)
Previous issue date: 2016-07-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This work study complex linear partial differential operators of order one without
having terms of zero order (complex vector fields). We have established a necessary and
suficient condition for local solvability of a class of operators which are not elliptic precisely
in a 1-dimensional submanifold and we construct solutions for a class of operators satisfying
the condition (P) and which are not elliptic precisely in a point. / O presente trabalho estuda operadores diferenciais parciais lineares complexos de
ordem um sem termos de ordem zero (campos de vetores complexos). Primeiramente
apresentando uma condição necessária e suficiente para resolubilidade local de uma classe
de operadores que deixam de ser elípticos precisamente em uma subvariedade 1-dimensional
e por fim construindo soluções para uma classe de operadores que satisfazem a condição
(P) e que deixam de ser elípticos precisamente em um ponto
|
3 |
[pt] CAMPOS DE LINHAS DISCRETOS SOBRE SUPERFÍCIES / [en] DISCRETE LINE FIELDS ON SURFACES08 January 2019 (has links)
[pt] Um campo de linhas sobre uma superfície é um mapa suave que atribui uma linha tangente a todos, exceto a um número finito de pontos. Esses campos modelam um número de propriedades geométricas e físicas,
tais como as direções de curvatura principais nas superfícies ou o fluxo de tensão na elasticidade. Para entender um campo de linha, é usual estudar o comportamento de suas órbitas, que podem apresentar diferentes padrões. Para este fim, consideramos uma abordagem topológica que consiste em utilizar os pontos críticos e separatrices para decompor o campo em regiões de comportamento homogêneo. Focamos em campos que possuem uma estrutura de Morse–Smale. Isso permite operações como o cancelamento
de pontos críticos controlados diretamente na decomposição de campo, o que é essencial para a remoção de ruído (simplificação da topologia) em campos provenientes de simulações ou amostragem de problemas do mundo real. Baseado na decomposição de um campo vetorial de Morse–Smale e no cancelamento de pontos críticos, Robin Forman introduziu uma definição discreta para esses campos. O presente trabalho fornece uma definição puramente combinatória para campos de linhas, os campos de linhas discretos, que implicam as construções discretas de Forman para campos de vetores por meio de uma nova representação destes. Campos de linhas discretos admitem uma decomposição que gera uma ponte entre os campos de linhas discretos e suaves, garantindo dessa forma a consistência topológica da definição. Também estabelecemos uma conexão entre um campo de linha discreto e um campo vetorial discreto, desse modo as ferramentas de campos de vetores podem ser usadas em campos de linhas. O trabalho fornece ainda um cancelamento topologicamente consistente de seus elementos críticos para um campo de linha discreto. / [en] A line field on a surface is a smooth map that assigns a tangent line to all but a finite number of points. Such fields model a number of geometric and physical properties, e.g. the principal curvature directions on
surfaces or the stress flux in elasticity. They can be seen as a generalization of vector fields. To understand a line field, it is common to study the behavior of its orbits, which can have many different patterns. To this end, we consider a topological approach: we use the critical points and separatrices to decompose the field in regions of similar behavior. We focus on fields that have a Morse–Smale structure. This allows operations like the cancellation of critical points controlled directly in the field decomposition, which is essential for noise removal (topology simplification) on fields coming from simulations or sampling of real-world problems. Based on the decomposition of a Morse–Smale vector field and on cancellation of critical points, Robin Forman introduced a discrete definition for Morse-Smale vector fields. This thesis provides a purely combinatorial definition of line fields, the discrete line fields, entailing Forman s discrete constructions for vector fields through a new representation of these. Discrete line fields admit a (Morse–Smale type of) decomposition that generates a bridge between discrete and smooth line fields, thus guaranteeing the topological consistency of the definition. We also use double branched coverings to suspend discrete line fields to discrete vector fields, so that vector field tools can be used for discrete line fields. Finally we provide, for a discrete line field, a topologically consistent (Morse-like) cancellation of critical elements. This allows a simplification of the discrete line field topology retaining only the most significant features.
|
4 |
Estabilidade estrutural dos campos vetoriais seccionalmente lineares no plano / Structural stability of piecewise-linear vector fields in the planeJacóia, Bruno de Paula 15 August 2013 (has links)
Estudamos uma classe de campos de vetores seccionalmente lineares no plano denotada por X. Tais campos aparecem frequentemente em modelos matemáticos aplicados à engenharia. Baseados no trabalho de J. Sotomayor e R. Garcia [SG03], impondo condições sobre as singularidades, órbitas periódicas e separatrizes, definimos um conjunto de campos de vetores que são estruturalmente estáveis em X. Provamos que esse conjunto é aberto, denso e tem medida de Lebesgue total em X, o qual é um espaço vetorial de dimensão finita. / We study a class of piecewise-linear vector fields in the plane denoted by X. These vector fields appear often in mathematical models applied to Engineering. Based on Jorge Sotomayor and Ronaldo Garcia paper [SG03], we impose conditions on singularities, periodic orbits and separatrices, to define a set of vector fields structurally stable in X. We give a proof that this set is open, dense and has full Lebesgue measure in X, that is a finite dimensional vector space.
|
5 |
Estabilidade estrutural dos campos vetoriais seccionalmente lineares no plano / Structural stability of piecewise-linear vector fields in the planeBruno de Paula Jacóia 15 August 2013 (has links)
Estudamos uma classe de campos de vetores seccionalmente lineares no plano denotada por X. Tais campos aparecem frequentemente em modelos matemáticos aplicados à engenharia. Baseados no trabalho de J. Sotomayor e R. Garcia [SG03], impondo condições sobre as singularidades, órbitas periódicas e separatrizes, definimos um conjunto de campos de vetores que são estruturalmente estáveis em X. Provamos que esse conjunto é aberto, denso e tem medida de Lebesgue total em X, o qual é um espaço vetorial de dimensão finita. / We study a class of piecewise-linear vector fields in the plane denoted by X. These vector fields appear often in mathematical models applied to Engineering. Based on Jorge Sotomayor and Ronaldo Garcia paper [SG03], we impose conditions on singularities, periodic orbits and separatrices, to define a set of vector fields structurally stable in X. We give a proof that this set is open, dense and has full Lebesgue measure in X, that is a finite dimensional vector space.
|
6 |
Campos de vetores em variedades singulares / Vector fields on singular varietiesNakajima, Evandro Alves 23 September 2013 (has links)
Neste trabalho estudamos índices de campos de vetores em variedades regulares e em variedades com singularidades isoladas. O principal resultado e o Teorema de Poincaré-Hopf que relaciona a característica de Euler de uma variedade com o índice de Poincaré-Hopf do campo. Para intersecções completas com singularidades isoladas, vemos também algumas variações deste teorema que relacionam a característica de Euler com o índice de Schwartz, o índice GSV e o número de Milnor da fibra genérica / In this work we study some indices of vector fields on regular manifolds, and on manifolds with isolated singularity. The main result is the Poincare-Hopf Theorem, which connects the Euler characteristic with the Poincare-Hopf index of the field. For complete intersections with isolated singularities, we also study some variations of this theorem, which connects the Euler characteristic with the Schwartz index, the GVS index and the Milnor number of the generic fiber
|
7 |
Campos de vetores em variedades singulares / Vector fields on singular varietiesEvandro Alves Nakajima 23 September 2013 (has links)
Neste trabalho estudamos índices de campos de vetores em variedades regulares e em variedades com singularidades isoladas. O principal resultado e o Teorema de Poincaré-Hopf que relaciona a característica de Euler de uma variedade com o índice de Poincaré-Hopf do campo. Para intersecções completas com singularidades isoladas, vemos também algumas variações deste teorema que relacionam a característica de Euler com o índice de Schwartz, o índice GSV e o número de Milnor da fibra genérica / In this work we study some indices of vector fields on regular manifolds, and on manifolds with isolated singularity. The main result is the Poincare-Hopf Theorem, which connects the Euler characteristic with the Poincare-Hopf index of the field. For complete intersections with isolated singularities, we also study some variations of this theorem, which connects the Euler characteristic with the Schwartz index, the GVS index and the Milnor number of the generic fiber
|
8 |
Sobre a topologia das singularidades de Morin / On the topology of Morin singularitiesCamila Mariana Ruiz 22 July 2015 (has links)
Neste trabalho, nós abordamos alguns resultados de T. Fukuda e de N. Dutertre e T. Fukui sobre a topologia das singularidades de Morin. Em particular, apresentamos uma nova prova para o Teorema de Dutertre-Fukui [2, Theorem 6.2], para o caso em que N = Rn, usando a Teoria de Morse para variedades com bordo. Baseados nas propriedades de um n-campo de vetores gradiente (∇ f1; : : : ∇fn) de uma aplicação de Morin f : M → Rn, com dim M ≥ n, na segunda parte deste trabalho, nós introduzimos o conceito de n-campos de Morin para n-campos de vetores que não são necessariamente gradientes. Nós também generalizamos o resultado de T. Fukuda [3, Theorem 1], que estabelece uma equivalência módulo 2 entre a característica de Euler de uma variedade diferenciável M e a característica de Euler dos conjuntos singulares de uma aplicação de Morin definida sobre M, para o contexto dos n-campos de Morin. / In this work, we revisit results of T. Fukuda and N. Dutertre and T. Fukui on the topology of Morin maps. In particular, we give a new proof for Dutertre-Fukui\'s Theorem [2, Theorem 6.2] when N = Rn, using Morse Theory for manifolds with boundary. Based on the properties of a gradient n-vector field (∇ f1; : : : ∇ fn) of a Morin map f : M → Rn, where dim M ≥ n, in the second part of this work, we introduce the concept of Morin n-vector field for n-vector fields V = (V1; : : : ; Vn) that are not necessarily gradients. We also generalize the result of T. Fukuda [3, Theorem 1], which establishes a module 2 equivalence between Euler\'s characteristic of a manifold M and Euler\'s characteristic of the singular sets of a Morin map defined on M, to the context of Morin n-vector fields.
|
9 |
Sobre a topologia das singularidades de Morin / On the topology of Morin singularitiesRuiz, Camila Mariana 22 July 2015 (has links)
Neste trabalho, nós abordamos alguns resultados de T. Fukuda e de N. Dutertre e T. Fukui sobre a topologia das singularidades de Morin. Em particular, apresentamos uma nova prova para o Teorema de Dutertre-Fukui [2, Theorem 6.2], para o caso em que N = Rn, usando a Teoria de Morse para variedades com bordo. Baseados nas propriedades de um n-campo de vetores gradiente (∇ f1; : : : ∇fn) de uma aplicação de Morin f : M → Rn, com dim M ≥ n, na segunda parte deste trabalho, nós introduzimos o conceito de n-campos de Morin para n-campos de vetores que não são necessariamente gradientes. Nós também generalizamos o resultado de T. Fukuda [3, Theorem 1], que estabelece uma equivalência módulo 2 entre a característica de Euler de uma variedade diferenciável M e a característica de Euler dos conjuntos singulares de uma aplicação de Morin definida sobre M, para o contexto dos n-campos de Morin. / In this work, we revisit results of T. Fukuda and N. Dutertre and T. Fukui on the topology of Morin maps. In particular, we give a new proof for Dutertre-Fukui\'s Theorem [2, Theorem 6.2] when N = Rn, using Morse Theory for manifolds with boundary. Based on the properties of a gradient n-vector field (∇ f1; : : : ∇ fn) of a Morin map f : M → Rn, where dim M ≥ n, in the second part of this work, we introduce the concept of Morin n-vector field for n-vector fields V = (V1; : : : ; Vn) that are not necessarily gradients. We also generalize the result of T. Fukuda [3, Theorem 1], which establishes a module 2 equivalence between Euler\'s characteristic of a manifold M and Euler\'s characteristic of the singular sets of a Morin map defined on M, to the context of Morin n-vector fields.
|
10 |
Conjuntos minimais e caóticos em campos de vetores planares suaves por partes / Minimal and chaotic sets in planar piecewise smooth vector fieldsGazetta, Daniele Alessandra Reghini [UNESP] 06 January 2016 (has links)
Submitted by DANIELE ALESSANDRA REGHINI GAZETTA null (daniellygaze@hotmail.com) on 2016-01-15T17:36:23Z
No. of bitstreams: 1
diss-daniele.pdf: 783553 bytes, checksum: e593f1ebb872fff02a080d05283744d5 (MD5) / Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo:
No campo “Versão a ser disponibilizada online imediatamente” foi informado que seria disponibilizado o texto completo porém no campo “Data para a disponibilização do texto completo” foi informado que o texto completo deverá ser disponibilizado apenas 6 meses após a defesa.
Caso opte pela disponibilização do texto completo apenas 6 meses após a defesa selecione no campo “Versão a ser disponibilizada online imediatamente” a opção “Texto parcial”. Esta opção é utilizada caso você tenha planos de publicar seu trabalho em periódicos científicos ou em formato de livro, por exemplo e fará com que apenas as páginas pré-textuais, introdução, considerações e referências sejam disponibilizadas.
Se optar por disponibilizar o texto completo de seu trabalho imediatamente selecione no campo “Data para a disponibilização do texto completo” a opção “Não se aplica (texto completo)”. Isso fará com que seu trabalho seja disponibilizado na íntegra no Repositório Institucional UNESP.
Por favor, corrija esta informação realizando uma nova submissão.
Agradecemos a compreensão. on 2016-01-15T19:12:27Z (GMT) / Submitted by DANIELE ALESSANDRA REGHINI GAZETTA null (daniellygaze@hotmail.com) on 2016-01-16T16:43:56Z
No. of bitstreams: 2
diss-daniele.pdf: 783553 bytes, checksum: e593f1ebb872fff02a080d05283744d5 (MD5)
daniele-dissert.pdf: 585710 bytes, checksum: 222237614b39411bc9b9a3e82ad6ab17 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-01-18T16:33:44Z (GMT) No. of bitstreams: 1
gazetta_dar_me_sjrp.pdf: 783553 bytes, checksum: e593f1ebb872fff02a080d05283744d5 (MD5) / Made available in DSpace on 2016-01-18T16:33:44Z (GMT). No. of bitstreams: 1
gazetta_dar_me_sjrp.pdf: 783553 bytes, checksum: e593f1ebb872fff02a080d05283744d5 (MD5)
Previous issue date: 2016-01-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O principal resultado dessa dissertação é o Teorema de Poincaré-Bendixson para
campos de vetores planares suaves por partes, que nos diz quais são os tipos de conjuntos
limite. Estudaremos também detalhes a respeito dos conceitos de conjuntos
minimais e caóticos em campos de vetores planares suaves por partes. / The main result of this work is the Poincaré - Bendixson Theorem for planar piecewise
smooth vector fields, which tell us what kind of limit sets arise in this context.
We will also study details about the concepts of minimal and chaotic sets in planar
piecewise smooth vector fields.
|
Page generated in 0.0595 seconds