Spelling suggestions: "subject:"campos dde vetores"" "subject:"campos dee vetores""
11 |
Geometria extrínseca de campos de vetores em R3 / Extrinsic geometry of vector fields in R3Gomes, Alacy José 13 May 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2018-06-29T19:22:20Z
No. of bitstreams: 2
Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:20:24Z (GMT) No. of bitstreams: 2
Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-07-03T15:20:24Z (GMT). No. of bitstreams: 2
Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-05-13 / In this work we first consider regular vector fields : R3 ! R3 and its orthogonal
distribution of planes. We present a characterization of the normal curvature
associated to and the system of implicit differential equations
2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0;
which define two one-dimensional singular and orthogonal foliations, which we call by
principal foliations and whose leaves are the principal lines of the distribution .
Next we describe the configurations of the principal foliations in a neighborhood
of the generic singular points that constitutes a regular curve in R3, which are
denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed
by studying the stability of the closed principal lines and we also present a Kupka-
Smale genericity result. To conclude, we study the structure of the singularities of
the principal foliations in a neighborhood of a singular hyperbolic point of the vector
field . / Neste trabalho consideramos inicialmente campos de vetores regulares : R3 ! R3
e sua distribuições ortogonais de planos . Apresentamos uma caracterização da
curvatura normal associada a e do sistema de equações diferenciais implícitas,
2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0;
que definem duas folheações unidimensionais singulares e ortogonais, denominadas
de folheações principais e cujas folhas são as linhas principais da distribuição .
A seguir descrevemos as configurações das folheações principais, numa vizinhança
dos pontos singulares genéricos que constituem uma curva regular em R3, denominados
de pontos parcialmente umbílicos Darbouxianos e semi-Darbouxianos. Depois
estudamos a estabilidade das linhas principais fechadas e apresentamos também um
resultado de genericidade do tipo Kupka-Smale. Na parte final, estudamos a estrutura
dos pontos singulares das folheações principais na vizinhança de um ponto
singular hiperbólico do campo de vetores .
|
12 |
Teoria do Averaging para campos de vetores suaves por partes / The Averaging theory for piecewise smooth vector fieldsVelter, Mariana Queiroz 05 February 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T12:02:56Z
No. of bitstreams: 2
Dissertação - Mariana Queiroz Velter - 2016.pdf: 3434033 bytes, checksum: 280742df0a3947cbf0f1aa8039428a72 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T12:04:25Z (GMT) No. of bitstreams: 2
Dissertação - Mariana Queiroz Velter - 2016.pdf: 3434033 bytes, checksum: 280742df0a3947cbf0f1aa8039428a72 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-05-19T12:04:25Z (GMT). No. of bitstreams: 2
Dissertação - Mariana Queiroz Velter - 2016.pdf: 3434033 bytes, checksum: 280742df0a3947cbf0f1aa8039428a72 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2016-02-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work the first-order Averaging theory will be studied. This theory replaces the
problem of finding and quantifying limit cycles of a vector field by the problem of finding
positive zeros of a function. We present the classical Averaging method (done for C 2
smooth vector fields) and we apply it to some special cases of quadratic polynomial vector
fields in R3. Afterwards, we show a generalization of the Averaging method proposed in
[3], which uses Brouwer degree theory in order to extend the method to continuous vector
field, in other words, the differentiability of a vector field is no longer required. Finally,
we will study the Averaging theory for piecewise smooth vector fields, presented in [14]
using the regularization technique for piecewise smooth vector fields, see [22]. Also we
will apply it to a class of polynomial vector field defined by parts, known as Kukles fields,
see [16]. / Neste trabalho a teoria do Averaging de primeira ordem será estudada. Teoria essa que
consiste em transferir o problema de encontrar e quantificar os ciclos limites de um determinado
campo de vetores para o problema de encontrar zeros positivos de uma determinada
função. Apresentaremos o método do Averaging clássico para campos de vetores
suaves, o qual assume que o referido campo é, no mínimo, de classe C 2 e aplicaremos
o método em alguns campos de vetores polinomiais quadráticos em R3 particulares. Em
seguida, apresentaremos uma generalização do método do Averaging, proposto em [3],
que utiliza a teoria do grau topológico de Brouwer para que esse seja válido para campos
de vetores somente contínuos, ou seja, nesse contexto, a diferenciabilidade não é necessária.
Por fim, estudaremos a teoria do Averaging para campos de vetores suaves por partes,
apresentada em [14] que utiliza a técnica de regularização de campos de vetores suaves
por partes, veja [22], e o aplicaremos a uma classe de campos de vetores polinomiais por
partes, denominada campos Kukles estudada em [16].
|
13 |
Estudo qualitativo de campos suaves por partes via problema de perturbação singular / Qualitative study of piecewise smooth vector field via singular pertubation problemSantos, Mayk Joaquim dos 16 January 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-02-16T11:16:03Z
No. of bitstreams: 2
Dissertação - Mayk Joaquim dos Santos - 2017.pdf: 2151565 bytes, checksum: 0afafa6be7f2f9c3ee2a27ca9bf4bf24 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-02-16T11:16:36Z (GMT) No. of bitstreams: 2
Dissertação - Mayk Joaquim dos Santos - 2017.pdf: 2151565 bytes, checksum: 0afafa6be7f2f9c3ee2a27ca9bf4bf24 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-02-16T11:16:36Z (GMT). No. of bitstreams: 2
Dissertação - Mayk Joaquim dos Santos - 2017.pdf: 2151565 bytes, checksum: 0afafa6be7f2f9c3ee2a27ca9bf4bf24 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-01-16 / In this work we will show that, given a piecewise smooth vector field, we can apply the regularization method and, from it, via blow-up, turn it into a singular perturbation problem. By doing that, we can use the tools from singular perturbation theory to perform a qualitative study of piecewise smooth vector fields. Finally, we will show that, through successive changes of coordinates, a singularity of a discontinuous submanifold of codimension k, where k=1 or k=2, can be transformed into a singularity of codimension 0 in order to study the qualitative behavior in this submanifold, where the Filippov’s convention holds. / Neste trabalho mostraremos que, dado um campo de vetores suaves por partes, podemos aplicar o método de regularização e, a partir deste, via “blow-up”, o transformamos em um problema de perturbação singular. Podemos, dessa forma, fazer uso das ferramentas da teoria de perturbação singular para realizar um estudo qualitativo dos campos de vetores suaves por partes. Por último, mostraremos que através de sucessivas mudanças de coordenadas podemos transformar uma singularidade de uma subvariedade de descontinuidade de codimensão k, onde k=1 ou k=2, em uma uma singularidade de codimensão 0 e estudar o comportamento qualitativo ao longo desta subvariedade, onde é válida a convenção de Filippov.
|
14 |
Um estudo dos ciclos limites de campos suaves por partes no plano / A study of limit cycles of piecewise vector fieldsContreras, Jeferson Arley Poveda 07 March 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-03-28T11:58:56Z
No. of bitstreams: 2
Dissertação - Jeferson Arley Poveda Contreras - 2018.pdf: 763599 bytes, checksum: 6800571168e0aa9de85d151e4c912725 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-03-29T11:29:24Z (GMT) No. of bitstreams: 2
Dissertação - Jeferson Arley Poveda Contreras - 2018.pdf: 763599 bytes, checksum: 6800571168e0aa9de85d151e4c912725 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-29T11:29:24Z (GMT). No. of bitstreams: 2
Dissertação - Jeferson Arley Poveda Contreras - 2018.pdf: 763599 bytes, checksum: 6800571168e0aa9de85d151e4c912725 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-03-07 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The goal of this work is study limit cycles of piecewise smooth vector fields. First, we present
the basic theory, passing through the areas of analysis, qualitative theory of differential
equations and algebra. We also present basic concepts of Filippov fields, which are
indispensable for the study of piecewise smooth fields. In chapter one, was the main topic, a
general method for finding limit cycles will be described; in the second chapter limit cycles
are found in a piecewise smooth vector field with non-degenerate center being perturbed by
a piecewise polynomial vector field. In the fourth chapter, we study limit cycles in piecewise
smooth Hamiltonian fields. / O objetivo deste trabalho é estudar ciclos limite de campos de vetores suaves por parte.
Primeiro apresentaremos a teoria básica, passando pelas áreas de análise, teoria qualitativa
das equações diferenciais e álgebra. Apresentamos também conceitos básicos de campos de
Filippov, os quais são imprescindíveis para o estudo dos campos suaves por partes. No
capítulo dos, como tópico principal, será descrito um método geral para encontrar ciclos
limite; no segundo três são encontrados ciclos limites em um campo de vetores suave por
partes com um centro não degenerado sendo perturbado por um polinômio. No quarto
capitulo estudaremos os ciclos limites de campos de vetores Hamiltonianos por parte.
|
15 |
Sobre a Geometria de Gráficos Killing Conformes Inteiros em ambientes Riemannianos Folheados. / About the Geometry of Graphs Killing Complete Conform in Riemannian Veneered Environments.ARAÚJO, Jogli Gidel da Silva. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T17:08:05Z
No. of bitstreams: 1
JOGLI GIDEL DA SILVA ARAÚJO - DISSERTAÇÃO PPGMAT 2014..pdf: 597763 bytes, checksum: 4efda81f9c43bb545607e3229077124a (MD5) / Made available in DSpace on 2018-08-09T17:08:05Z (GMT). No. of bitstreams: 1
JOGLI GIDEL DA SILVA ARAÚJO - DISSERTAÇÃO PPGMAT 2014..pdf: 597763 bytes, checksum: 4efda81f9c43bb545607e3229077124a (MD5)
Previous issue date: 2014-03 / Capes / Neste trabalho, estudamos a geometria de gráficos Killing conformes inteiros, isto é, gráficos construídos a partir do fluxo gerado por um campo de vetores V Killing conforme completo, os quais estão definidos sobre uma folha integral da folheação V⊥ ortogonal a V. Além disso, estudamos a restrição da norma do gradiente da função z a qual determina tal gráficoΣ(z), nesse sentido, apresentamos condições suficientes para assegurar que Σ(z) é uma hipersuperfície totalmente umbílica e, em particular, uma folha integral de V⊥. / We study the geometry of entire conformal Killing graphs, that is, graphs constructed
through the flow generated by a complete conformal Killing vector field V
and which are defined over an integral leaf of the foliation V⊥ orthogonal to V. In
this setting, under a suitable restriction on the norm of the gradient of the function z
which determines such a graphΣ(z), we establish sufficient conditions to ensure that
Σ(z) is totally umbilical and, in particular, an integral leaf of V⊥.
|
16 |
A qualitative study of planar piecewise smooth vector fields / Um estudo qualitativo de campos de vetores suaves por partes no planoCardoso Filho, João Lopes 18 May 2018 (has links)
Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-06-14T11:12:47Z
No. of bitstreams: 2
Tese - João Lopes Cardoso Filho - 2018.pdf: 1729607 bytes, checksum: 8279e98ec23b68bab062f8c812957bf4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-06-15T10:25:16Z (GMT) No. of bitstreams: 2
Tese - João Lopes Cardoso Filho - 2018.pdf: 1729607 bytes, checksum: 8279e98ec23b68bab062f8c812957bf4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-06-15T10:25:16Z (GMT). No. of bitstreams: 2
Tese - João Lopes Cardoso Filho - 2018.pdf: 1729607 bytes, checksum: 8279e98ec23b68bab062f8c812957bf4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-05-18 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / In this work we exhibit canonical forms for 2D codimension one piecewise smooth
vector Fields (PSVF). All possible orientations and codimension one scenarios were
covered. Also the intrinsic objects that characterize each one of the canonical forms
were presented. Also we present topological distinct canonical forms for a larger
class for symmetric PSVF where the set of fixed points is contained in the variety os
discontinuity. Finally we analyze the simultaneous occurrence of sliding and crossing
limit cycle in the case where the piecewise linear vector fields presents a continuum
of periodic orbits. / Neste trabalho exibiremos inicialmente as formas canônicas para campos vetoriais
suaves por partes (PSVF) no plano. Todas os possíveis cenários de codimensão um
são abordados. Também apresentamos formas canônicas topologicamente distintas
para uma classe de PSVF com simetria onde o conjunto de pontos fixos está contido
na variedade de descontinuidade. Finalmente, analisaremos a ocorrência simultânea
de ciclos limite costurantes e deslizantes no caso linear por partes que apresentam
um contínuo de órbitas periódicas.
|
17 |
Campos de vetores suaves por partes : aspectos teóricos e aplicações /Gonçalves, Luiz Fernando January 2020 (has links)
Orientador: Tiago de Carvalho / Resumo: Nesta tese abordaremos aspectos qualitativos e dinâmicos de problemas envolvendo campos de vetores suaves por partes, também conhecidos como campos descontínuos. Primeiramente, apresentamos aplicações da teoria de campos de vetores descontínuos em modelos de tratamento intermitente de Câncer e Vírus da Imunodeficiência Humana onde exibimos a existência de singularidades típicas e órbitas periódicas. Ainda no contexto de aplicações, revisitamos um modelo predador-presa descontínuo de modo a concluir que o mesmo tem um comportamento caótico através da existência de uma órbita de Shilnikov. Posteriormente, respondemos questões sobre existência de conjuntos minimais e caóticos para campos de vetores descontínuos na esfera bidimensional. Em seguida, partimos ao estudo de bifurcação de ciclos limites em campos de vetores descontínuos tri e bidimensionais. No primeiro caso, perturbamos um campo descontínuo tangente a uma folheação por toros de modo a gerar uma quantidade finita ou infinita de ciclos limites. No segundo caso, estudamos uma família de campos descontínuos apresentando uma dobra-dobra invisível de costura, sua ciclicidade e a relação entre os coeficientes de Lyapunov desta família e sua regularização. Além disso, estudamos campos vetoriais suaves por partes Hamiltonianos contendo uma dobra-dobra invisível de costura donde apresentamos uma fórmula explícita para o cálculo dos cinco primeiros coeficientes de Lyapunov, além de explorar os diagramas de bifurcação gerados pe... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this work we discuss qualitative and dynamic features of problems involving piecewise smooth vector fields, also known as discontinuous vector fields. Firstly, we present applications of discontinuous vector field theory in Human Immunodeficiency Virus and Cancer intermittent treatment models where we exhibit typical singularities and periodic orbits. Moreover, we revisit a discontinuous predator-prey model in order to conclude that it has a chaotic behavior through the existence of a Shilnikov orbit. Next, we answer questions about the existence of minimal and chaotic sets in the bidimensional sphere for discontinuous vector fields. Subsequently, we investigate the creation of limit cycles in three and two-dimensional discontinuous vector fields. In the first case, we perturb a discontinuous vector field tangent to a foliation composed by topological nested tori to generate a finite or infinite number of limit cycles. In the second case, we analyze a family of discontinuous vector fields containing a crossing invisible fold-fold, their cyclicity and the relation between the Lyapunov coefficients of this family and their regularization. Also, we study general piecewise Hamiltonian vector fields presenting a crossing invisible fold-fold where we give an explicit formula for the computation of the five first Lyapunov coefficients in addition to the investigation of the bifurcation diagrams. / Doutor
|
18 |
Equações diferenciais ordinárias não suaves autônomas e não autônomas / Autonomous and non autonomous non smooth ordinary differential equationsSilva, Clayton Eduardo Lente da [UNESP] 20 May 2016 (has links)
Submitted by CLAYTON EDUARDO LENTE DA SILVA null (claedu@gmail.com) on 2016-06-02T17:41:44Z
No. of bitstreams: 1
TeseFinalClayton.pdf: 1339813 bytes, checksum: 78fb3fb4fd37414af7b1a14dd1d3a122 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-06-06T16:37:20Z (GMT) No. of bitstreams: 1
silva_cel_dr_sjrp.pdf: 1339813 bytes, checksum: 78fb3fb4fd37414af7b1a14dd1d3a122 (MD5) / Made available in DSpace on 2016-06-06T16:37:20Z (GMT). No. of bitstreams: 1
silva_cel_dr_sjrp.pdf: 1339813 bytes, checksum: 78fb3fb4fd37414af7b1a14dd1d3a122 (MD5)
Previous issue date: 2016-05-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta tese estudamos sistemas dinâmicos não suaves autônomos e não autônomos. Consideramos inicialmente sistemas quadráticos positivamente limitados autônomos planares e damos condições sobre os campos para que o sistema de Filippov correspondente seja limitado. Também estudamos uma classe de sistemas quadráticos e provamos que, sob algumas restrições nos coeficientes da parte linear, os sistemas de Filippov relacionados são limitados. Em seguida, consideramos sistemas não autônomos e damos condições para a existência de soluções periódicas de uma classe de equações diferenciais ordinárias não autônomas. Por fim, consideramos equações diferenciais ordinárias não autônomas de segunda ordem genéricas, relacionadas a sistemas não suaves e não autônomos, estudamos o conceito de solução destas equações e damos condições analíticas que são satisfeitas por soluções típicas, como as soluções deslizantes, por exemplo. A unicidade de soluções para estas equações também é estudada. / In this thesis we study autonomous and non-autonomous non-smooth dynamical systems. We initially consider planar autonomous positively bounded quadratic systems. We give conditions on the vector fields for that the correspondent Filippov system be bounded. We also study a class of quadratic systems and we prove that, under some restrictions on the coefficients of linear part, the related Filippov systems are bounded. We then consider non-autonomous systems and we give conditions for the existence of periodic solutions of a certain class of non-autonomous ordinary differential equations. Finally we consider generic non-autonomous second order differential equations and we study the concept of solution of these equations and determine analytical conditions that are satisfied by typical solutions, sliding solutions for instance. Moreover, the uniqueness of solutions for these equations is studied.
|
Page generated in 0.0531 seconds