Spelling suggestions: "subject:"deoria doo averaging"" "subject:"deoria doo overaging""
1 |
Teoria do Averaging para campos de vetores suaves por partes / The Averaging theory for piecewise smooth vector fieldsVelter, Mariana Queiroz 05 February 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T12:02:56Z
No. of bitstreams: 2
Dissertação - Mariana Queiroz Velter - 2016.pdf: 3434033 bytes, checksum: 280742df0a3947cbf0f1aa8039428a72 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-05-19T12:04:25Z (GMT) No. of bitstreams: 2
Dissertação - Mariana Queiroz Velter - 2016.pdf: 3434033 bytes, checksum: 280742df0a3947cbf0f1aa8039428a72 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-05-19T12:04:25Z (GMT). No. of bitstreams: 2
Dissertação - Mariana Queiroz Velter - 2016.pdf: 3434033 bytes, checksum: 280742df0a3947cbf0f1aa8039428a72 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2016-02-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work the first-order Averaging theory will be studied. This theory replaces the
problem of finding and quantifying limit cycles of a vector field by the problem of finding
positive zeros of a function. We present the classical Averaging method (done for C 2
smooth vector fields) and we apply it to some special cases of quadratic polynomial vector
fields in R3. Afterwards, we show a generalization of the Averaging method proposed in
[3], which uses Brouwer degree theory in order to extend the method to continuous vector
field, in other words, the differentiability of a vector field is no longer required. Finally,
we will study the Averaging theory for piecewise smooth vector fields, presented in [14]
using the regularization technique for piecewise smooth vector fields, see [22]. Also we
will apply it to a class of polynomial vector field defined by parts, known as Kukles fields,
see [16]. / Neste trabalho a teoria do Averaging de primeira ordem será estudada. Teoria essa que
consiste em transferir o problema de encontrar e quantificar os ciclos limites de um determinado
campo de vetores para o problema de encontrar zeros positivos de uma determinada
função. Apresentaremos o método do Averaging clássico para campos de vetores
suaves, o qual assume que o referido campo é, no mínimo, de classe C 2 e aplicaremos
o método em alguns campos de vetores polinomiais quadráticos em R3 particulares. Em
seguida, apresentaremos uma generalização do método do Averaging, proposto em [3],
que utiliza a teoria do grau topológico de Brouwer para que esse seja válido para campos
de vetores somente contínuos, ou seja, nesse contexto, a diferenciabilidade não é necessária.
Por fim, estudaremos a teoria do Averaging para campos de vetores suaves por partes,
apresentada em [14] que utiliza a técnica de regularização de campos de vetores suaves
por partes, veja [22], e o aplicaremos a uma classe de campos de vetores polinomiais por
partes, denominada campos Kukles estudada em [16].
|
2 |
Integrabilidade e dinâmica global de sistema diferenciais polinomiais definidos em R³ com superfícies algébricas invariantes de graus 1 e 2 / Integrability and global dynamics of polynomial differential systems defined in R³ with invariant algebraic surfaces of degrees 1 and 2Reinol, Alisson de Carvalho [UNESP] 05 July 2017 (has links)
Submitted by Alisson de Carvalho Reinol null (alissoncarv@gmail.com) on 2017-07-18T15:03:51Z
No. of bitstreams: 1
tese_alisson_final.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-07-19T14:22:46Z (GMT) No. of bitstreams: 1
reinol_ac_dr_sjrp.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5) / Made available in DSpace on 2017-07-19T14:22:46Z (GMT). No. of bitstreams: 1
reinol_ac_dr_sjrp.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5)
Previous issue date: 2017-07-05 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho, consideramos aspectos algébricos e dinâmicos de alguns problemas envolvendo superfícies algébricas invariantes em sistemas diferenciais polinomiais definidos em R³. Determinamos o número máximo de planos invariantes que um sistema diferencial quadrático pode ter e estudamos a realização e integrabilidade de tais sistemas. Fornecemos a forma normal para sistemas diferenciais com quádricas invariantes e estudamos de forma mais detalhada a dinâmica e integrabilidade de sistemas diferenciais quadráticos com um paraboloide elíptico como superfície algébrica invariante. Por fim, estudamos as consequências dinâmicas ao se perturbar um sistema diferencial, cujo espaço de fase é folheado por superfícies algébricas invariantes. Para tal, consideramos o sistema diferencial quadrático conhecido como sistema Sprott A, que depende de um parâmetro real a e apresenta comportamento caótico mesmo sem ter pontos de equilíbrio, tendo, assim, um hidden attractor para valores adequados do parâmetro a. Provamos que, para a=0, o espaço de fase desse sistema é folheado por esferas concêntricas invariantes. Utilizando a Teoria do Averaging e o Teorema KAM (Kolmogorov-Arnold-Moser), provamos que, para a>0 suficientemente pequeno, uma órbita periódica orbitalmente estável emerge de um equilíbrio do tipo zero-Hopf não isolado localizado na origem e que formam-se toros invariantes em torno desta órbita periódica. Concluímos que a ocorrência de tais fatos tem um papel importante na formação do hidden attractor. / In this work, we consider algebraic and dynamical aspects of some problems involving invariant algebraic surfaces in polynomial differential systems defined in R³. We determine the maximum number of invariant planes that a quadratic differential system can have and we study the realization and integrability of such systems. We provide the normal form for differential systems having an invariant quadric and we study in more detail the dynamics and integrability of quadratic differential systems having an elliptic paraboloid as invariant algebraic surface. Finally, we study the dynamic consequences of perturbing differential system whose phase space is foliated by invariant algebraic surfaces. For this we consider the quadratic differential system known as Sprott A system, which depends on one real parameter a and presents chaotic behavior even without having any equilibrium point, thus having a hidden attractor for suitable values of parameter a. We prove that, for a=0, the phase space of this system is foliated by invariant concentric spheres. By using the Averaging Theory and the KAM (Kolmogorov-Arnold-Moser) Theorem, we prove that, for a>0 sufficiently small, an orbitally stable periodic orbit emerges from a zero-Hopf nonisolated equilibrium point located at the origin and that invariant tori are formed around this periodic orbit. We conclude that the occurrence of these facts has an important role in the formation of the hidden attractor. / FAPESP: 2013/26602-7
|
Page generated in 0.0955 seconds