• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Índice de equações diferenciais binárias / Index of binary differential equations

Challapa, Lizandro Sanchez 31 March 2006 (has links)
Neste trabalho estudamos as equações diferenciais binárias em uma vizinhança de um ponto singular isolado. Usando a abordagem geométrica de Bruce e Tari para o estudo da multiplicidade de uma equação diferencial binária, introduzimos uma definição de índice para esta classe de equações, o qual coincide com a definição clássica de Hopf para o índice de equações diferenciais binárias positivas. O principal resultado é uma fórmula que expressa o índice em termos de informação obtida a partir dos coeficientes da equação original. A invariância do índice por equivalências suaves é também estudada. Para uma classe especial de equações diferenciais implícitas, relacionamos o índice da equação com índices de especiais 1-formas e campos vetoriais em variedades com singularidades isoladas / In this work we study binary differential equations in a neighborhood of an isolated singular point. Following the geometric approach of Bruce and Tari in their work on multiplicity of a binary differential equation, we introduce a new definition of index for this class of equations, which coincides with the classical definition by Hopf for positive binary differential equations. The main result is a formula expressing the index in terms of information obtained from the coefficients of the original equation. The invariance of the index by smooth equivalences is also proved. Some results relating the index with the indices of 1-forms and vector fields in singular varieties are given for a special class of implicit differential equations
2

Índice de equações diferenciais binárias / Index of binary differential equations

Lizandro Sanchez Challapa 31 March 2006 (has links)
Neste trabalho estudamos as equações diferenciais binárias em uma vizinhança de um ponto singular isolado. Usando a abordagem geométrica de Bruce e Tari para o estudo da multiplicidade de uma equação diferencial binária, introduzimos uma definição de índice para esta classe de equações, o qual coincide com a definição clássica de Hopf para o índice de equações diferenciais binárias positivas. O principal resultado é uma fórmula que expressa o índice em termos de informação obtida a partir dos coeficientes da equação original. A invariância do índice por equivalências suaves é também estudada. Para uma classe especial de equações diferenciais implícitas, relacionamos o índice da equação com índices de especiais 1-formas e campos vetoriais em variedades com singularidades isoladas / In this work we study binary differential equations in a neighborhood of an isolated singular point. Following the geometric approach of Bruce and Tari in their work on multiplicity of a binary differential equation, we introduce a new definition of index for this class of equations, which coincides with the classical definition by Hopf for positive binary differential equations. The main result is a formula expressing the index in terms of information obtained from the coefficients of the original equation. The invariance of the index by smooth equivalences is also proved. Some results relating the index with the indices of 1-forms and vector fields in singular varieties are given for a special class of implicit differential equations
3

Sobre a geometria diferencial do cross-cap no 3-espaço Euclidiano / On the differential geometry of the cross-cap in the Euclidean 3-space

Sichacá, Martín Barajas 24 February 2017 (has links)
Nesta tese estudamos a geometria diferencial do cross-cap usando ferramentas da teoria de singularidades. Estudamos curvas definidas sobre uma superfície regular que captam o contato da superfície com planos e esferas e estendemos o estudo para o cross-cap. Consideramos os fenômenos locais que ocorrem genericamente na família de projeções ortogonais do cross-cap e obtemos informações detalhadas sobre as bifurcações da projeção do conjuntos dos pontos duplos juntamente com a do contorno aparente. Estudamos as simetrias reflexõais infinitesimais do cross-cap através das singularidades da família da aplicações dobra e damos uma caracterização geométrica das mesmas. Finalmente, consideramos dualidade nas equações diferenciais binárias que definem as curvas assintóticas e as linhas de curvatura sobre o cross-cap. Estudamos o conjunto dos pontos onde ocorrem as inflexões de tais curvas e a relação deste conjunto com o conjunto sub-parabólico e flecnodal. / In this thesis we study the differential geometry of the cross-cap using singularity theory. We study curves on a regular surface that capture the contact of the surface with planes and spheres and extend our study to the cross-cap. We deal with local phenomena that occur generically in the family of orthogonal projection of the cross-cap and obtain detailed information about the bifurcations of the projection of double point curve together with the profile. We study the infinitesimal reflectional symmetry of a cross-cap via the singularities of the fold maps and give a geometrical characterization of these maps. Finally, we consider the duality in the binary differential equations of the asymptotic curves and of the curvature lines on a cross-cap. We study the inflection set of this curves and their relation with the subparabolic set and the flecnodal curve.
4

Sobre a geometria diferencial do cross-cap no 3-espaço Euclidiano / On the differential geometry of the cross-cap in the Euclidean 3-space

Martín Barajas Sichacá 24 February 2017 (has links)
Nesta tese estudamos a geometria diferencial do cross-cap usando ferramentas da teoria de singularidades. Estudamos curvas definidas sobre uma superfície regular que captam o contato da superfície com planos e esferas e estendemos o estudo para o cross-cap. Consideramos os fenômenos locais que ocorrem genericamente na família de projeções ortogonais do cross-cap e obtemos informações detalhadas sobre as bifurcações da projeção do conjuntos dos pontos duplos juntamente com a do contorno aparente. Estudamos as simetrias reflexõais infinitesimais do cross-cap através das singularidades da família da aplicações dobra e damos uma caracterização geométrica das mesmas. Finalmente, consideramos dualidade nas equações diferenciais binárias que definem as curvas assintóticas e as linhas de curvatura sobre o cross-cap. Estudamos o conjunto dos pontos onde ocorrem as inflexões de tais curvas e a relação deste conjunto com o conjunto sub-parabólico e flecnodal. / In this thesis we study the differential geometry of the cross-cap using singularity theory. We study curves on a regular surface that capture the contact of the surface with planes and spheres and extend our study to the cross-cap. We deal with local phenomena that occur generically in the family of orthogonal projection of the cross-cap and obtain detailed information about the bifurcations of the projection of double point curve together with the profile. We study the infinitesimal reflectional symmetry of a cross-cap via the singularities of the fold maps and give a geometrical characterization of these maps. Finally, we consider the duality in the binary differential equations of the asymptotic curves and of the curvature lines on a cross-cap. We study the inflection set of this curves and their relation with the subparabolic set and the flecnodal curve.
5

Normalisation de champs de vecteurs holomorphes et équations différentielles implicites / Normalization of holomorphic vector fields and implicit differential equations

Aurouet, Julien 06 December 2013 (has links)
La théorie classique des formes normales a pour but de simplifier des problèmes compliqués grâce à des changements de coordonnées réguliers pour ne conserver que les caractéristiques dynamiques du système. Plus précisément, on considère un système dynamique que l'on dit "élémentaire", comme par exemple la partie linéaire d'un champ de vecteurs au voisinage d'un point singulier, et on se donne une perturbation de ce système élémentaire. Les formes normales sont alors l'ensemble des représentants de ces perturbations à la conjugaison près d'une transformation régulière. Elles ne sont constituées que des termes qui caractérisent la dynamique du système perturbé et que l'on appelle "résonances". Dans la première partie de la thèse on cherche à comprendre la dynamique locale d'équations différentielles implicites de la forme F(x,y,y')=0, où F est un germe de fonction holomorphe au voisinage d'un point singulier. Pour cela on utilise la relation intime entre les systèmes implicites et les champs liouvilliens. La classification par transformation de contact des équations implicites provient de la classification symplectique des champs liouvilliens. On utilise alors toute la théorie des formes normales pour les champs de vecteurs, dans le cas holomorphe (Brjuno, Siegel, Stolovitch) et dans le cas réel (Sternberg), que l'on adapte pour les champs liouviliens avec des transformations symplectiques. On établit alors des résultats de classification des équations implicites en fonction des invariants dynamiques, ainsi que des conditions d'existence de solutions locales via les formes normales. / The aim of the classical theory of normal forms is to simplify complicated problems by using regular changes of coordinates, in order to keep the dynamical characteristics of the system. More precisely, we consider a dynamic system said to be "elementary", like a linear part of a vector field in the neighborhood of a singular point, and we focus on a perturbation of this elementary system. Normal forms are the set of all representatives of those perturbations under the action of the group of regular transformation. They are composed of terms which caracterise the dynamics of the perturbed system, and which are called "resonances". In the first part, we try to understand the local dynamic of implicit equations of the form $F(x,y,y')=0$, where $F$ is a germ of holomorphic function in a neighborhood of a singular point. To this end we use the relation between implicit systems and liouvillian vector fields. The classification by contact transformations of implicit equations come from the symplectic classification of liouvillian vector fields. We use all normal forms theory for vector fields, in complex case (Bjruno, Siegel, Stolovitch), and in real case (Sternberg), adapted to liouvillian fields with symplectic transformations. We establish classification results for implicit equations according to the dynamical invariants, and existence conditions of local solutions using normal forms. In the second part, we undertake the normalization of an analytic vector field in a neighborhood of the torus. Brjuno enunciates a theorem of normalization, under conditions of control of small divisors and integrability of the normal forms ; however he doesn't give any proof of that theorem.
6

Geometria extrínseca de campos de vetores em R3 / Extrinsic geometry of vector fields in R3

Gomes, Alacy José 13 May 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2018-06-29T19:22:20Z No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:20:24Z (GMT) No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-07-03T15:20:24Z (GMT). No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-13 / In this work we first consider regular vector fields : R3 􀀀! R3 and its orthogonal distribution of planes. We present a characterization of the normal curvature associated to and the system of implicit differential equations 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; which define two one-dimensional singular and orthogonal foliations, which we call by principal foliations and whose leaves are the principal lines of the distribution . Next we describe the configurations of the principal foliations in a neighborhood of the generic singular points that constitutes a regular curve in R3, which are denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed by studying the stability of the closed principal lines and we also present a Kupka- Smale genericity result. To conclude, we study the structure of the singularities of the principal foliations in a neighborhood of a singular hyperbolic point of the vector field . / Neste trabalho consideramos inicialmente campos de vetores regulares : R3 􀀀! R3 e sua distribuições ortogonais de planos . Apresentamos uma caracterização da curvatura normal associada a e do sistema de equações diferenciais implícitas, 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; que definem duas folheações unidimensionais singulares e ortogonais, denominadas de folheações principais e cujas folhas são as linhas principais da distribuição . A seguir descrevemos as configurações das folheações principais, numa vizinhança dos pontos singulares genéricos que constituem uma curva regular em R3, denominados de pontos parcialmente umbílicos Darbouxianos e semi-Darbouxianos. Depois estudamos a estabilidade das linhas principais fechadas e apresentamos também um resultado de genericidade do tipo Kupka-Smale. Na parte final, estudamos a estrutura dos pontos singulares das folheações principais na vizinhança de um ponto singular hiperbólico do campo de vetores .

Page generated in 0.1556 seconds