Spelling suggestions: "subject:"partially umbilical points"" "subject:"partially umbilicus points""
1 |
Geometria extrínseca de campos de vetores em R3 / Extrinsic geometry of vector fields in R3Gomes, Alacy José 13 May 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2018-06-29T19:22:20Z
No. of bitstreams: 2
Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:20:24Z (GMT) No. of bitstreams: 2
Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-07-03T15:20:24Z (GMT). No. of bitstreams: 2
Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-05-13 / In this work we first consider regular vector fields : R3 ! R3 and its orthogonal
distribution of planes. We present a characterization of the normal curvature
associated to and the system of implicit differential equations
2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0;
which define two one-dimensional singular and orthogonal foliations, which we call by
principal foliations and whose leaves are the principal lines of the distribution .
Next we describe the configurations of the principal foliations in a neighborhood
of the generic singular points that constitutes a regular curve in R3, which are
denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed
by studying the stability of the closed principal lines and we also present a Kupka-
Smale genericity result. To conclude, we study the structure of the singularities of
the principal foliations in a neighborhood of a singular hyperbolic point of the vector
field . / Neste trabalho consideramos inicialmente campos de vetores regulares : R3 ! R3
e sua distribuições ortogonais de planos . Apresentamos uma caracterização da
curvatura normal associada a e do sistema de equações diferenciais implícitas,
2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0;
que definem duas folheações unidimensionais singulares e ortogonais, denominadas
de folheações principais e cujas folhas são as linhas principais da distribuição .
A seguir descrevemos as configurações das folheações principais, numa vizinhança
dos pontos singulares genéricos que constituem uma curva regular em R3, denominados
de pontos parcialmente umbílicos Darbouxianos e semi-Darbouxianos. Depois
estudamos a estabilidade das linhas principais fechadas e apresentamos também um
resultado de genericidade do tipo Kupka-Smale. Na parte final, estudamos a estrutura
dos pontos singulares das folheações principais na vizinhança de um ponto
singular hiperbólico do campo de vetores .
|
Page generated in 0.0559 seconds