• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um princípio de invariância para sistemas discretos / An invariance principle for discrete dynamic systems

Calliero, Taís Ruoso 19 July 2005 (has links)
Muitos sistemas físicos são modelados por sistemas dinâmicos discretos. Com o advento da tecnologia digital os sistemas discretos tornaram-se ainda mais importantes, sendo assim, o desenvolvimento de ferramentas analíticas para este tipo de sistema é de grande importância. Neste trabalho, estudam-se alguns dos principais resultados relacionados à estabilidade de sistemas dinâmicos discretos, e alguns novos são propostos. É bem conhecido na literatura que a estabilidade de um ponto de equilíbrio pode ser caracterizada pelo Método Direto de Lyapunov, via uma função auxiliar denominada função de Lyapunov. LaSalle, ao estudar a teoria de Lyapunov, estabeleceu uma importante relação entre função de Lyapunov e conjuntos limites de Birkhoff, que deu origem ao Princípio de Invariância de LaSalle. Este, entre outras coisas, permite a análise de estabilidade assintótica. Tanto o Método Direto de Lyapunov quanto o Princípio de Invariância requerem que a variação da função de Lyapunov seja não positiva ao longo das trajetórias do sistema. Em sistemas com comportamentos mais complexos, dificilmente encontra-se uma função com esta propriedade. Neste trabalho, propõe-se uma versão mais geral do Princípio de Invariância para sistemas discretos, a qual não exige que a variação da função de Lyapunov seja sempre não positiva. Com isto, a obtenção de funções deste tipo torna-se mais simples e muitos problemas, que antes não poderiam ser tratados com a teoria convencional, passam a ser tratados através deste novo resultado. Os resultados desenvolvi- dos, neste trabalho, são úteis para encontrar estimativas de atratores de sistemas não-lineares discretos. / Many physical systems are modeled by discrete dynamic systems. With the evolution digital technology, the discrete systems became still more important, so the development of analytic tools for this type of system has high importance nowadays. ln this work, some of the main results in stability of discrete dynamic systems are studied and some new ones are proposed. lt is well known in the literature that the stability of an equilibrium point may be characterized by the Lyapunov\'s Direct Method, with a function known as Lyapunov auxiliary function. LaSalle, when studying the Lyapunov theory, established an important relationship between Lyapunov function and Birkhoff limit sets. Then, he created the Lasalle\'s lnvariance Principle. This, among other features, allows the analysis of asymptotically stability. Both the Lyapunov\'s Direct Method and the lnvariance Principle request the variation of the Lyapunov function to be negative semidefinite along the system trajectory. In systems with more complex behaviors, a function is hardly found with this property. This work developed a more general version of the lnvariance Principle for discrete systems, which does not require the variation of the Lyapunov function to be always negative semidefinite. This new theory enables to find these functions easily and many insoluble problems, which could not be treated with the conventional theory before, become treatable by this new result. The results of this work are useful to find estimates of discrete nonlinear systems atractors.
2

Groupes discrets en géométrie hyperbolique : aspects effectifs / Discrete groups in hyperbolic geometry : effective aspects

Granier, Jordane 08 December 2015 (has links)
Cette thèse traite de deux problèmes en géométrie hyperbolique réelle et complexe. On étudie dans un premier temps des structures géométriques sur des espaces de modules de métriques plates à singularités coniques sur la sphère. D'après des travaux de W. Thurston, l'espace de modules des métriques plates sur S^2 à n singularités coniques d'angles donnés admet une structure de variété hyperbolique complexe non complète, dont le complété métrique est une variété conique hyperbolique complexe. On étudie dans cette thèse des formes réelles de ces espaces complexes en se restreignant à des métriques invariantes par une involution. On décrit une structure hyperbolique réelle sur les espaces de modules de métriques plates symétriques à 6 (respectivement 8) singularités d'angles égaux. On décrit les composantes connexes de ces espaces comme ouverts denses d'orbifolds hyperboliques arithmétiques. On montre que les complétés métriques de ces composantes connexes admettent un recollement naturel, dont on étudie la structure.La deuxième partie de cette thèse traite des ensembles limites de groupes discrets d'isométries du plan hyperbolique complexe. On construit le premier exemple explicite de sous-groupe discret de PU(2,1) dont l'ensemble limite est homéomorphe à l'éponge de Menger / This thesis is concerned with two problems in real and complex hyperbolic geometry. The first problem is the study of geometric structures on moduli spaces of flat metrics on the sphere with cone singularities. W. Thurston proved that the moduli space of flat metrics on S^2 with n singularities of given angles forms a non complete complex hyperbolic manifold, and that its metric completion is a complex hyperbolic cone-manifold. In this thesis we study real forms of these complex spaces by restricting our attention to metrics that are invariant under an involution. We describe a real hyperbolic structure on moduli spaces of flat symmetric metrics of 6 (respectively 8) singularities of same angle. We describe explicitly the connected components of these spaces as dense open subsets of arithmetic hyperbolic orbifolds. We show that the metric completions of these components admit a natural gluing, and we study the structure of the glued space. The second part of this thesis is devoted to the study of limit sets of discrete subgroups of the isometry group of complex hyperbolic plane. We construct the first known explicit example of a discrete subgroup of PU(2,1) which admits a limit set homeomorphic to the Menger curve
3

Um princípio de invariância para sistemas discretos / An invariance principle for discrete dynamic systems

Taís Ruoso Calliero 19 July 2005 (has links)
Muitos sistemas físicos são modelados por sistemas dinâmicos discretos. Com o advento da tecnologia digital os sistemas discretos tornaram-se ainda mais importantes, sendo assim, o desenvolvimento de ferramentas analíticas para este tipo de sistema é de grande importância. Neste trabalho, estudam-se alguns dos principais resultados relacionados à estabilidade de sistemas dinâmicos discretos, e alguns novos são propostos. É bem conhecido na literatura que a estabilidade de um ponto de equilíbrio pode ser caracterizada pelo Método Direto de Lyapunov, via uma função auxiliar denominada função de Lyapunov. LaSalle, ao estudar a teoria de Lyapunov, estabeleceu uma importante relação entre função de Lyapunov e conjuntos limites de Birkhoff, que deu origem ao Princípio de Invariância de LaSalle. Este, entre outras coisas, permite a análise de estabilidade assintótica. Tanto o Método Direto de Lyapunov quanto o Princípio de Invariância requerem que a variação da função de Lyapunov seja não positiva ao longo das trajetórias do sistema. Em sistemas com comportamentos mais complexos, dificilmente encontra-se uma função com esta propriedade. Neste trabalho, propõe-se uma versão mais geral do Princípio de Invariância para sistemas discretos, a qual não exige que a variação da função de Lyapunov seja sempre não positiva. Com isto, a obtenção de funções deste tipo torna-se mais simples e muitos problemas, que antes não poderiam ser tratados com a teoria convencional, passam a ser tratados através deste novo resultado. Os resultados desenvolvi- dos, neste trabalho, são úteis para encontrar estimativas de atratores de sistemas não-lineares discretos. / Many physical systems are modeled by discrete dynamic systems. With the evolution digital technology, the discrete systems became still more important, so the development of analytic tools for this type of system has high importance nowadays. ln this work, some of the main results in stability of discrete dynamic systems are studied and some new ones are proposed. lt is well known in the literature that the stability of an equilibrium point may be characterized by the Lyapunov\'s Direct Method, with a function known as Lyapunov auxiliary function. LaSalle, when studying the Lyapunov theory, established an important relationship between Lyapunov function and Birkhoff limit sets. Then, he created the Lasalle\'s lnvariance Principle. This, among other features, allows the analysis of asymptotically stability. Both the Lyapunov\'s Direct Method and the lnvariance Principle request the variation of the Lyapunov function to be negative semidefinite along the system trajectory. In systems with more complex behaviors, a function is hardly found with this property. This work developed a more general version of the lnvariance Principle for discrete systems, which does not require the variation of the Lyapunov function to be always negative semidefinite. This new theory enables to find these functions easily and many insoluble problems, which could not be treated with the conventional theory before, become treatable by this new result. The results of this work are useful to find estimates of discrete nonlinear systems atractors.
4

Conjuntos minimais e caóticos em campos de vetores planares suaves por partes / Minimal and chaotic sets in planar piecewise smooth vector fields

Gazetta, Daniele Alessandra Reghini [UNESP] 06 January 2016 (has links)
Submitted by DANIELE ALESSANDRA REGHINI GAZETTA null (daniellygaze@hotmail.com) on 2016-01-15T17:36:23Z No. of bitstreams: 1 diss-daniele.pdf: 783553 bytes, checksum: e593f1ebb872fff02a080d05283744d5 (MD5) / Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: No campo “Versão a ser disponibilizada online imediatamente” foi informado que seria disponibilizado o texto completo porém no campo “Data para a disponibilização do texto completo” foi informado que o texto completo deverá ser disponibilizado apenas 6 meses após a defesa. Caso opte pela disponibilização do texto completo apenas 6 meses após a defesa selecione no campo “Versão a ser disponibilizada online imediatamente” a opção “Texto parcial”. Esta opção é utilizada caso você tenha planos de publicar seu trabalho em periódicos científicos ou em formato de livro, por exemplo e fará com que apenas as páginas pré-textuais, introdução, considerações e referências sejam disponibilizadas. Se optar por disponibilizar o texto completo de seu trabalho imediatamente selecione no campo “Data para a disponibilização do texto completo” a opção “Não se aplica (texto completo)”. Isso fará com que seu trabalho seja disponibilizado na íntegra no Repositório Institucional UNESP. Por favor, corrija esta informação realizando uma nova submissão. Agradecemos a compreensão. on 2016-01-15T19:12:27Z (GMT) / Submitted by DANIELE ALESSANDRA REGHINI GAZETTA null (daniellygaze@hotmail.com) on 2016-01-16T16:43:56Z No. of bitstreams: 2 diss-daniele.pdf: 783553 bytes, checksum: e593f1ebb872fff02a080d05283744d5 (MD5) daniele-dissert.pdf: 585710 bytes, checksum: 222237614b39411bc9b9a3e82ad6ab17 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-01-18T16:33:44Z (GMT) No. of bitstreams: 1 gazetta_dar_me_sjrp.pdf: 783553 bytes, checksum: e593f1ebb872fff02a080d05283744d5 (MD5) / Made available in DSpace on 2016-01-18T16:33:44Z (GMT). No. of bitstreams: 1 gazetta_dar_me_sjrp.pdf: 783553 bytes, checksum: e593f1ebb872fff02a080d05283744d5 (MD5) Previous issue date: 2016-01-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O principal resultado dessa dissertação é o Teorema de Poincaré-Bendixson para campos de vetores planares suaves por partes, que nos diz quais são os tipos de conjuntos limite. Estudaremos também detalhes a respeito dos conceitos de conjuntos minimais e caóticos em campos de vetores planares suaves por partes. / The main result of this work is the Poincaré - Bendixson Theorem for planar piecewise smooth vector fields, which tell us what kind of limit sets arise in this context. We will also study details about the concepts of minimal and chaotic sets in planar piecewise smooth vector fields.

Page generated in 0.0598 seconds