• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de estabilidade de sistemas dinâmicos descontínuos e aplicações /

Santos, Iguer Luis Domini dos. January 2008 (has links)
Resumo: Neste trabalho introduzimos uma classe de sistemas dinâmicos descontínuos com espaço tempo contínuo e analisamos Teoremas que asseguram condições suficientes para a estabilidade de Lyapunov utilizando funções de Lyapunov. Além disso, consideramos também Teoremas de Recíproca, que sob algumas condições garantem uma determinada necessidade para esses Teoremas de estabilidade de Lyapunov. / Abstract: In this work we introduce a class of discontinuous dynamical systems with time space continuous and we analyze Theorems that ensure sufficient conditions for the Lyapunov stability using Lyapunov functions. Moreover, we also consider Converse Theorems, which under some conditions guarantee a determined necessity for those Theorems of Lyapunov stability. / Orientador: Geraldo Nunes Silva / Coorientador: Luis Antônio Fernandes de Oliveira / Banca: Luis Antônio Barrera San Martin / Banca: Adalberto Spezamiglio / Mestre
2

Análise de estabilidade de sistemas dinâmicos descontínuos e aplicações

Santos, Iguer Luis Domini dos [UNESP] 26 February 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:07Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-02-26Bitstream added on 2014-06-13T19:06:47Z : No. of bitstreams: 1 santos_ild_me_sjrp.pdf: 434711 bytes, checksum: 230caec3d969a14efac9b1700fd1dd97 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho introduzimos uma classe de sistemas dinâmicos descontínuos com espaço tempo contínuo e analisamos Teoremas que asseguram condições suficientes para a estabilidade de Lyapunov utilizando funções de Lyapunov. Além disso, consideramos também Teoremas de Recíproca, que sob algumas condições garantem uma determinada necessidade para esses Teoremas de estabilidade de Lyapunov. / In this work we introduce a class of discontinuous dynamical systems with time space continuous and we analyze Theorems that ensure sufficient conditions for the Lyapunov stability using Lyapunov functions. Moreover, we also consider Converse Theorems, which under some conditions guarantee a determined necessity for those Theorems of Lyapunov stability.
3

Bifurcações genéricas e relações de equivalência em campos de vetores suaves por partes / Generic bifurcations and equivalence relations in piecewise smooth vector fields

Perez, Otávio Henrique [UNESP] 23 February 2017 (has links)
Submitted by Otávio Henrique Perez null (otavio_perez@hotmail.com) on 2017-03-03T20:13:38Z No. of bitstreams: 1 DissertacaoOtavioHenriquePerez.pdf: 2570606 bytes, checksum: dd0f73a1627a83d453f101ef3a973d23 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-09T17:45:41Z (GMT) No. of bitstreams: 1 perez_oh_me_sjrp.pdf: 2570606 bytes, checksum: dd0f73a1627a83d453f101ef3a973d23 (MD5) / Made available in DSpace on 2017-03-09T17:45:41Z (GMT). No. of bitstreams: 1 perez_oh_me_sjrp.pdf: 2570606 bytes, checksum: dd0f73a1627a83d453f101ef3a973d23 (MD5) Previous issue date: 2017-02-23 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho iremos abordar aspectos qualitativos e geométricos a respeito de campos de vetores suaves por partes. Nosso foco será estudar bifurcações locais e globais de codimensão um e dois e também algumas relações de equivalência para campos vetoriais suaves por partes definidos no plano. Classificaremos e caracterizaremos bifurcações genéricas por meio do retrato de fase e do diagrama de bifurcação dos campos envolvidos. Também faremos uma breve introdução sobre Sistemas Slow-Fast. / In this work we study qualitative and geometric aspects of piecewise smooth vector fields. Our focus is to study local and global bifurcations of codimension one and two and some equivalence relations for piecewise smooth vector fields defined on the plane. We will classify and characterize generic bifurcations using the phase portrait and the bifurcation diagram of the vector fields involved. We also incorporate a brief introduction about Slow-Fast Systems. / FAPESP: 2014/18707-6
4

Análise de estabilidade de sistemas dinâmicos híbridos e descontínuos modelados por semigrupos:

Pena, Ismael da Silva [UNESP] 26 February 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-02-26Bitstream added on 2014-06-13T18:30:53Z : No. of bitstreams: 1 pena_is_me_sjrp.pdf: 488383 bytes, checksum: 40a97f3540caa6b8f6f2691c3a402579 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Sistemas dinâmicos híbridos se diferenciam por exibir simultaneamente variados tipos de comportamento dinâmico (contínuo, discreto, eventos discretos) em diferentes partes do sistema. Neste trabalho foram estudados resultados de estabilidade no sentido de Lyapunov para sistemas dinâmicos híbridos gerais, que utilizam uma noção de tempo generalizado, definido em um espaço métrico totalmente ordenado. Mostrou-se que estes sistemas podem ser imersos em sistemas dinâmicos descontínuos definidos em R+, de forma que sejam preservadas suas propriedades qualitativas. Como foco principal, estudou-se resultados de estabilidade para sistemas dinâmicos descontínuos modelados por semigrupos de operadores, em que os estados do sistema pertencem à espaços de Banach. Neste caso, de forma alternativa à teoria clássica de estabilidade, os resultados não utilizam as usuais funções de Lyapunov, sendo portanto mais fáceis de se aplicar, tendo em vista a dificuldade em se encontrar tais funções para muitos sistemas. Além disso, os resultados foram aplicados à uma classe de equações diferenciais com retardo. / Hybrid dynamical systems are characterized for showing simultaneously a variety of dynamic behaviors (continuous, discrete, discrete events) in different parts of the System. This work discusses stability results in the Lyapunov sense for general hybrid dynamical systems that use a generalized notion of time, defined in a completely ordered metric space. It has been shown that these systems may be immersed in discontinuous dynamical systems defined in R+, so that their quality properties are preserved. As the main focus, it is studied stability results for discontinuous dynamical systems modeled by semigroup operators, in which the states belong to Banach spaces. In this case, an alternative to the classical theory of stability, the results do not make use of the usual Lyapunov functions, and therefore are easier to apply, in view of the difficulty in finding such functions for many systems. Furthermore, the results were applied to a class of time-delay discontinuous differential equations.
5

Análise de estabilidade de sistemas dinâmicos híbridos e descontínuos modelados por semigrupos /

Pena, Ismael da Silva. January 2008 (has links)
Resumo: Sistemas dinâmicos híbridos se diferenciam por exibir simultaneamente variados tipos de comportamento dinâmico (contínuo, discreto, eventos discretos) em diferentes partes do sistema. Neste trabalho foram estudados resultados de estabilidade no sentido de Lyapunov para sistemas dinâmicos híbridos gerais, que utilizam uma noção de tempo generalizado, definido em um espaço métrico totalmente ordenado. Mostrou-se que estes sistemas podem ser imersos em sistemas dinâmicos descontínuos definidos em R+, de forma que sejam preservadas suas propriedades qualitativas. Como foco principal, estudou-se resultados de estabilidade para sistemas dinâmicos descontínuos modelados por semigrupos de operadores, em que os estados do sistema pertencem à espaços de Banach. Neste caso, de forma alternativa à teoria clássica de estabilidade, os resultados não utilizam as usuais funções de Lyapunov, sendo portanto mais fáceis de se aplicar, tendo em vista a dificuldade em se encontrar tais funções para muitos sistemas. Além disso, os resultados foram aplicados à uma classe de equações diferenciais com retardo. / Abstract: Hybrid dynamical systems are characterized for showing simultaneously a variety of dynamic behaviors (continuous, discrete, discrete events) in different parts of the System. This work discusses stability results in the Lyapunov sense for general hybrid dynamical systems that use a generalized notion of time, defined in a completely ordered metric space. It has been shown that these systems may be immersed in discontinuous dynamical systems defined in R+, so that their quality properties are preserved. As the main focus, it is studied stability results for discontinuous dynamical systems modeled by semigroup operators, in which the states belong to Banach spaces. In this case, an alternative to the classical theory of stability, the results do not make use of the usual Lyapunov functions, and therefore are easier to apply, in view of the difficulty in finding such functions for many systems. Furthermore, the results were applied to a class of time-delay discontinuous differential equations. / Orientador: Geraldo Nunes Silva / Coorientador: Luís Antônio Fernandes de Oliveira / Banca: Carlos Alberto Raposo da Cunha / Banca: Waldemar Donizete Bastos / Mestre

Page generated in 0.0786 seconds