Spelling suggestions: "subject:"[een] LINE FIELDS"" "subject:"[enn] LINE FIELDS""
1 |
[pt] CAMPOS DE LINHAS DISCRETOS SOBRE SUPERFÍCIES / [en] DISCRETE LINE FIELDS ON SURFACES08 January 2019 (has links)
[pt] Um campo de linhas sobre uma superfície é um mapa suave que atribui uma linha tangente a todos, exceto a um número finito de pontos. Esses campos modelam um número de propriedades geométricas e físicas,
tais como as direções de curvatura principais nas superfícies ou o fluxo de tensão na elasticidade. Para entender um campo de linha, é usual estudar o comportamento de suas órbitas, que podem apresentar diferentes padrões. Para este fim, consideramos uma abordagem topológica que consiste em utilizar os pontos críticos e separatrices para decompor o campo em regiões de comportamento homogêneo. Focamos em campos que possuem uma estrutura de Morse–Smale. Isso permite operações como o cancelamento
de pontos críticos controlados diretamente na decomposição de campo, o que é essencial para a remoção de ruído (simplificação da topologia) em campos provenientes de simulações ou amostragem de problemas do mundo real. Baseado na decomposição de um campo vetorial de Morse–Smale e no cancelamento de pontos críticos, Robin Forman introduziu uma definição discreta para esses campos. O presente trabalho fornece uma definição puramente combinatória para campos de linhas, os campos de linhas discretos, que implicam as construções discretas de Forman para campos de vetores por meio de uma nova representação destes. Campos de linhas discretos admitem uma decomposição que gera uma ponte entre os campos de linhas discretos e suaves, garantindo dessa forma a consistência topológica da definição. Também estabelecemos uma conexão entre um campo de linha discreto e um campo vetorial discreto, desse modo as ferramentas de campos de vetores podem ser usadas em campos de linhas. O trabalho fornece ainda um cancelamento topologicamente consistente de seus elementos críticos para um campo de linha discreto. / [en] A line field on a surface is a smooth map that assigns a tangent line to all but a finite number of points. Such fields model a number of geometric and physical properties, e.g. the principal curvature directions on
surfaces or the stress flux in elasticity. They can be seen as a generalization of vector fields. To understand a line field, it is common to study the behavior of its orbits, which can have many different patterns. To this end, we consider a topological approach: we use the critical points and separatrices to decompose the field in regions of similar behavior. We focus on fields that have a Morse–Smale structure. This allows operations like the cancellation of critical points controlled directly in the field decomposition, which is essential for noise removal (topology simplification) on fields coming from simulations or sampling of real-world problems. Based on the decomposition of a Morse–Smale vector field and on cancellation of critical points, Robin Forman introduced a discrete definition for Morse-Smale vector fields. This thesis provides a purely combinatorial definition of line fields, the discrete line fields, entailing Forman s discrete constructions for vector fields through a new representation of these. Discrete line fields admit a (Morse–Smale type of) decomposition that generates a bridge between discrete and smooth line fields, thus guaranteeing the topological consistency of the definition. We also use double branched coverings to suspend discrete line fields to discrete vector fields, so that vector field tools can be used for discrete line fields. Finally we provide, for a discrete line field, a topologically consistent (Morse-like) cancellation of critical elements. This allows a simplification of the discrete line field topology retaining only the most significant features.
|
2 |
Singularités en géométrie sous-riemannienne / Singularities in sub-Riemannian geometrySacchelli, Ludovic 17 September 2018 (has links)
Nous étudions les relations qui existent entre des aspects de la géométrie sous-riemannienne et une diversité de singularités typiques dans ce contexte.Avec les théorèmes de Whitney sous-riemanniens, nous conditionnons l’existence de prolongements globaux de courbes horizontales définies sur des fermés à des hypothèses de non-singularité de l’application point-final dans l’approximation nilpotente de la variété.Nous appliquons des méthodes perturbatives pour obtenir des asymptotiques sur la longueur de courbes localement minimisantes perdant leur optimalité proche de leur point de départ dans le cas des variétés sous-riemanniennes de contact de dimension arbitraire. Nous décrivons la géométrie du lieu singulier et prouvons sa stabilité dans le cas des variétés de dimension 5.Nous introduisons une construction permettant de définir des champs de directions à l’aide de couples de champs de vecteurs. Ceci fournit une topologie naturelle pour analyser la stabilité des singularités de champs de directions sur des surfaces. / We investigate the relationship between features of of sub-Riemannian geometry and an array of singularities that typically arise in this context.With sub-Riemannian Whitney theorems, we ensure the existence of global extensions of horizontal curves defined on closed set by requiring a non-singularity hypothesis on the endpoint-map of the nilpotent approximation of the manifold to be satisfied.We apply perturbative methods to obtain asymptotics on the length of short locally-length-minimizing curves losing optimality in contact sub-Riemannian manifolds of arbitrary dimension. We describe the geometry of the singular set and prove its stability in the case of manifolds of dimension 5.We propose a construction to define line fields using pairs of vector fields. This provides a natural topology to study the stability of singularities of line fields on surfaces.
|
3 |
Contrôle adiabatique des systèmes quantiques / Adiabatic control of quantum systemsAugier, Nicolas 27 September 2019 (has links)
Le but principal de la thèse est d'étudier les liens entre les singularités du spectre d'un Hamiltonien quantique contrôlé et les questions de contrôlabilité de l'équation Schr"odinger associée.La principale question qui se pose est de savoir comment contrôler une famille de systèmes quantiques dépendant des paramètres avec une entrée de commande commune. Ce problème de contrôlabilité d'ensemble est lié à la conception d'une stratégie de contrôle robuste lorsqu'un paramètre (une fréquence de résonance ou une inhomogénéité de champ de contrôle par exemple) est inconnu, et constitue un enjeu important pour les expérimentateurs.Grâce à l'étude des familles à un paramètre de Hamiltoniens et de leurs singularités génériques, nous donnons une stratégie de contrôle explicite pour le problème de contrôlabilité d'ensemble lorsque les conditions géométriques sur le spectre des Hamiltoniens sont satisfaites. Le résultat est basé sur la théorie de l'approximation adiabatique et sur la présence de courbes d'intersections coniques de valeurs propres du Hamiltonien contrôlé. La technique proposée fonctionne pour des systèmes évoluant à la fois dans des espaces de Hilbert de dimension finie et de dimension infinie. Nous étudions ensuite le problème de la contrôlabilité d'ensemble sous des hypothèses moins restrictives sur le spectre, à savoir la présence de singularités non-coniques. Sous des conditions génériques, de telles singularités n'apparaissent pas pour des systèmes uniques, mais apparaissent pour des familles de systèmes à un paramètre.Pour l'étude d'un système unique, nous nous concentrons sur une classe de courbes dans l'espace des contrôles, appelées les courbes non-mixantes (définies dans cite{Bos}), qui peuvent optimiser la dynamique adiabatique près des intersections coniques et non coniques. Elles sont liées à la géométrie des espaces propres du Hamiltonien contrôlé et l'approximation adiabatique possède une meilleure précision le long de celles-ci.Nous proposons d'étudier la compatibilité de l'approximation adiabatique avec la Rotating Wave Approximation. De telles approximations sont généralement combinées par les physiciens. Mon travail montre que cela ne se justifie pour les systèmes quantiques à dimensions finies que dans certaines conditions sur les échelles de temps. Nous étudions également les questions de contrôle d'ensemble dans ce cas. / The main purpose of the thesis is to study the links between the singularities of the spectrum of a controlled quantum Hamiltonian and the controllability issues of the associated Schr"odinger equation.The principal issue that is developed is how to control a parameter-dependent family of quantum systems with a common control input. This problem of ensemble controllability is linked to the design of a robust control strategy when a parameter (a resonance frequency or a control field inhomogeneity for instance) is unknown, and is an important issue for experimentalists.Thanks to the study one-parametric families of Hamiltonians and their generic singularities, we give an explicit control strategy for the ensemble controllability problem when geometric conditions on the spectrum of the Hamiltonian are satisfied. The result is based on adiabatic approximation theory and on the presence of curves of conical eigenvalue intersections of the controlled Hamiltonian. The proposed technique works for systems evolving both in finite-dimensional and infinite-dimensional Hilbert spaces. Then we study the problem of ensemble controllability under less restrictive hypotheses on the spectrum, namely the presence of non-conical singularities. Under generic conditions such non-conical singularities are not present for single systems, but appear for one-parametric families of systems.For the study of a single system, we focus on a class of curves in the space of controls, called the non-mixing curves (defined in cite{Bos}), that can optimize the adiabatic dynamics near conical and non-conical intersections. They are linked to the geometry of the eigenspaces of the controlled Hamiltonian and the adiabatic approximation holds with higher precision along them.We propose to study the compatibility of the adiabatic approximation with the rotating wave approximation. Such approximations are usually done in cascade by physicists. My work shows that this is justified for finite dimensional quantum systems only under certain conditions on the time scales. We also study ensemble control issues in this case.
|
Page generated in 0.0405 seconds