• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bases de fonctions sur les variétés / Function bases on manifolds

Vallet, Bruno 10 July 2008 (has links)
Les bases de fonctions sont des outils indispensables de la géométrie numérique puisqu'ils permettent de représenter des fonctions comme des vecteurs, c'est à dire d'appliquer les outils de l'algèbre linéaire à l'analyse fonctionnelle. Dans cette thèse, nous présentons plusieurs constructions de bases de fonctions sur des surfaces pour la géométrie numérique. Nous commençons par présenter les bases de fonctions usuelles des éléments finis et du calcul extérieur discret, leur théorie et leurs limites. Nous étudions ensuite le Laplacien et sa discrétisation, ce qui nous permettra de construire une base de fonctions particulière~: les fonctions propres de l'opérateur de Laplace-Beltrami, ou harmoniques variétés. Celles-ci permettent de généraliser la transformée de Fourier et le filtrage spectral aux fonctions définies sur des surfaces. Nous présentons ensuite des applications de cette base de fonction à la géométrie numérique. En particulier, nous montrons qu'une fois calculée, cette base de fonction permet de filtrer la géométrie en temps interactif. Pour pouvoir définir des bases de fonctions de façon plus indépendante du maillage de la surface, nous nous intéressons ensuite aux paramétrisations globales, et en particulier aux champs de directions à symétries qui permettent de les définir. Ainsi, dans la dernière partie, nous étudions ces champs de directions à symétries, et en particulier leur géométrie et leur topologie. Nous donnons alors des outils pour les construire, les manipuler et les visualiser / Function bases are fundamental objects in geometry processing as they allow to represent functions as vectors, that is to apply tools from linear algebra to functional analysis. In this thesis, we present various constructions of useful functions bases for geometry processing. We start by presenting usual function bases, their theory and limits. We then study the Laplacian operator and its discretization, and use it to define a particular function basis: Laplacian eigenfunctions or Manifold harmonics. The Manifold Hamonics form a function basis that allows to generalize the Fourier transform and spectral filtering on a surface. We present some applications and extensions of this basis for geometry processing. To define function bases in a mesh-independant manner, we need to build a global parameterization, and especially the direction fields required to define them. Thus, in the last part of this thesis we study N-symmetry direction fields on surfaces, and in particular their geometry and topology. We then give tools to build, edit, control and visualize them
2

Singularités en géométrie sous-riemannienne / Singularities in sub-Riemannian geometry

Sacchelli, Ludovic 17 September 2018 (has links)
Nous étudions les relations qui existent entre des aspects de la géométrie sous-riemannienne et une diversité de singularités typiques dans ce contexte.Avec les théorèmes de Whitney sous-riemanniens, nous conditionnons l’existence de prolongements globaux de courbes horizontales définies sur des fermés à des hypothèses de non-singularité de l’application point-final dans l’approximation nilpotente de la variété.Nous appliquons des méthodes perturbatives pour obtenir des asymptotiques sur la longueur de courbes localement minimisantes perdant leur optimalité proche de leur point de départ dans le cas des variétés sous-riemanniennes de contact de dimension arbitraire. Nous décrivons la géométrie du lieu singulier et prouvons sa stabilité dans le cas des variétés de dimension 5.Nous introduisons une construction permettant de définir des champs de directions à l’aide de couples de champs de vecteurs. Ceci fournit une topologie naturelle pour analyser la stabilité des singularités de champs de directions sur des surfaces. / We investigate the relationship between features of of sub-Riemannian geometry and an array of singularities that typically arise in this context.With sub-Riemannian Whitney theorems, we ensure the existence of global extensions of horizontal curves defined on closed set by requiring a non-singularity hypothesis on the endpoint-map of the nilpotent approximation of the manifold to be satisfied.We apply perturbative methods to obtain asymptotics on the length of short locally-length-minimizing curves losing optimality in contact sub-Riemannian manifolds of arbitrary dimension. We describe the geometry of the singular set and prove its stability in the case of manifolds of dimension 5.We propose a construction to define line fields using pairs of vector fields. This provides a natural topology to study the stability of singularities of line fields on surfaces.

Page generated in 0.1095 seconds