Spelling suggestions: "subject:"adiabatic theory"" "subject:"diabatic theory""
1 |
Extended adiabatic treatments of continuum channels in nuclear stripping pickup reactionsGonul, Bulent January 1994 (has links)
Although the quasi-adiabatic calculations have led to an improved description of the measured observables, the theoretical justifications of the assumptions made in the model have not yet been studied. The first part of the work described in this thesis is therefore concerned with the clarification of these theoretical uncertainties by performing a rigorous investigation of the accuracy and the validity of the model. In addition, we reformulate the quasi-adiabatic theory to give a more general formalism, approaching the three-body problem in a different way. This alternative formulation provides a clear understanding of the assumptions made in the original quasi-adiabatic theory. Using the spirit of the new quasi-adiabatic formalism, we also develop alternative approximation schemes for the treatment of quantum mechanical three-body systems. The accuracy and the range of validity of the developments, together with the quasi-adiabatic theory, are investigated carefully and precisely by comparing their predictions with those essentially exact CDCC technique for the 66Zn (d,p)67Zn reaction at 88.2 MeV. It is found that the alternative models and quasi-adiabatic theory are reliable techniques for the treatment of deuteron breakup process at intermediate energies of interest. The remainder of this thesis is devoted to the investigation of the mechanism of (p,d*) reactions. As the treatment of the final state interactions in such reactions has not previously been studied consistently, we develop an adiabatic method and apply it to new data for the 13C(p,d)12C reaction with 35 MeV incident proton energy. Due to the weak coupling between spin channels of the continuum n-p system at the energies of interest, the singlet and triplet state pickup cross-sections for the final n-p system are analyzed separately. We find that the contribution from the singlet state is dominant for small relative energies while the triplet state dominates for large energies. This application clarifies the relationship between the three-body dynamics in the final state of (p,d) and (p,d*) reactions.
|
2 |
Rapid frequency chirps of an Alfvén wave in a toroidal plasmaWang, Ge, active 2013 30 September 2013 (has links)
Results from models that describe frequency chirps of toroidal Alfvén eigenmode excited by energetic particles are presented here. This structure forms in TAE gap and may or may not chirp into the continuum. Initial work described the particle wave interaction in terms of a generic Hamiltonian for the particle wave interaction, whose spatial dependence was xed in time. In addition, we have developed an improved adiabatic TAE model that takes into account the spatial prole variation of the mode and the nite orbit excursion from the resonant ux surfaces, for a wide range of toroidal mode numbers. We have shown for the generic xed prole model that the results from the adiabatic model agree very well with simulation result except when the adiabatic condition breaks down due to the rapid variations of the wave amplitude and chirping frequency. We have been able to solve the adiabatic problem in the case when the spatial prole is allowed to vary in time, in accord with the structure of the response functions, as a function of frequency. All the models predict that up-chirping holes do not penetrate into the continuum. On the other hand clump structures, which down chirp in frequency may, depending on detailed parameters, penetrate the continuum. The systematic theory is more restrictive than the generic theory, for the conditions that enable clump to penetrate into the continuum. In addition, the systematic theory predicts an important nite drift orbit width eect, which eventually limits and suppresses a down-chirping response in the lower continuum. This interruption of the chirping occurs when the trapped particles make a transition from intersecting both resonant points of the continuum to just one resonant point. / text
|
3 |
On the controllability of the quantum dynamics of closed and open systems / Sur la contrôlabilité de la dynamique quantique des systèmes fermés et ouvertsPinna, Lorenzo 26 January 2018 (has links)
On etudie la contrôlabilité des systèmes quantiques dans deux contextes différents: le cadre standard fermé, dans lequel un système quantique est considéré comme isolé et le problème de contrôle est formulé sur l'équation de Schrödinger; le cadre ouvert qui décrit un système quantique en interaction avec un plus grand, dont seuls les paramètres qualitatifs sont connus, au moyen de l'équation de Lindblad sur les états.Dans le contexte des systèmes fermés on se focalise sur la classe intéressante des systèmes spin-boson, qui décrivent l'interaction entre un système quantique à deux niveaux et un nombre fini de modes distingués d'un champ bosonique. On considère deux exemples prototypiques, le modèle de Rabi et le modèle de Jaynes-Cummings qui sont encore très populaires dans plusieurs domaines de la physique quantique. Notamment, dans le contexte de la Cavity Quantum Electro Dynamics (C-QED), ils fournissent une description précise de la dynamique d'un atome à deux niveaux dans une cavité micro-onde en résonance, comme dans les expériences récentes de S. Haroche. Nous étudions les propriétés de contrôlabilité de ces modèles avec deux types différents d'opérateurs de contrôle agissant sur la partie bosonique, correspondant respectivement – dans l'application à la C-QED – à un champ électrique et magnétique externe. On passe en revue quelques résultats récents et prouvons la contrôlabilité approximative du modèle de Jaynes-Cummings avec ces contrôles. Ce résultat est basé sur une analyse spectrale exploitant les non-résonances du spectre. En ce qui concerne la relation entre l'Hamiltonien de Rabi et Jaynes-Cummings nous traitons dans un cadre rigoureux l'approximation appelée d'onde tournante. On formule le problème comme une limite adiabatique dans lequel la fréquence de detuning et le paramètre de force d'interaction tombent à zero, ce cas est connu sous le nom de régime de weak-coupling. On prouve que, sous certaines hypothèses sur le rapport entre le detuning et le couplage, la dynamique de Jaynes-Cumming et Rabi montrent le même comportement, plus précisément les opérateurs d'évolution qu'ils génèrent sont proches à la norme.Dans le cadre des systèmes quantiques ouverts nous étudions la contrôlabilité de l'équation de Lindblad. Nous considérons un contrôle agissant adiabatiquement sur la partie interne du système, que nous voyons comme un degré de liberté qui peut être utilisé pour contraster l'action de l'environnement. L'action adiabatique du contrôle est choisie pour produire une transition robuste. On prouve, dans le cas prototype d'un système à deux niveaux, que le système approche un ensemble de points d'équilibre déterminés par l'environnement, plus précisément les paramètres qui spécifient l'opérateur de Lindblad. Sur cet ensemble, le système peut être piloté adiabatiquement en choisissant un contrôle approprié. L'analyse est fondée sur l'application de méthodes de perturbation géométrique singulière. / We investigate the controllability of quantum systems in two differentsettings: the standard 'closed' setting, in which a quantum system is seen as isolated, the control problem is formulated on the Schroedinger equation; the open setting that describes a quantum system in interaction with a larger one, of which just qualitative parameters are known, by means of the Lindblad equation on states.In the context of closed systems we focus our attention to an interesting class ofmodels, namely the spin-boson models. The latter describe the interaction between a 2-level quantum system and finitely many distinguished modes of a bosonic field. We discuss two prototypical examples, the Rabi model and the Jaynes-Cummings model, which despite their age are still very popular in several fields of quantum physics. Notably, in the context of cavity Quantum Electro Dynamics (C-QED) they provide an approximate yet accurate description of the dynamics of a 2-level atom in a resonant microwave cavity, as in recent experiments of S. Haroche. We investigate the controllability properties of these models, analyzing two different types of control operators acting on the bosonic part, corresponding -in the application to cavity QED- to an external electric and magnetic field, respectively. We review some recent results and prove the approximate controllability of the Jaynes-Cummings model with these controls. This result is based on a spectral analysis exploiting the non-resonances of the spectrum. As far as the relation between the Rabi andthe Jaynes-Cummings Hamiltonians concerns, we treat the so called rotating waveapproximation in a rigorous framework. We formulate the problem as an adiabaticlimit in which the detuning frequency and the interaction strength parameter goes to zero, known as the weak-coupling regime. We prove that, under certain hypothesis on the ratio between the detuning and the coupling, the Jaynes-Cumming and the Rabi dynamics exhibit the same behaviour, more precisely the evolution operators they generate are close in norm.In the framework of open quantum systems we investigate the controllability ofthe Lindblad equation. We consider a control acting adiabatically on the internal part of the system, which we see as a degree of freedom that can be used to contrast the action of the environment. The adiabatic action of the control is chosen to produce a robust transition. We prove, in the prototype case of a two-level system, that the system approach a set of equilibrium points determined by the environment, i.e. the parameters that specify the Lindblad operator. On that set the system can be adiabatically steered choosing a suitable control. The analysis is based on the application of geometrical singular perturbation methods.
|
4 |
Contrôle adiabatique des systèmes quantiques / Adiabatic control of quantum systemsAugier, Nicolas 27 September 2019 (has links)
Le but principal de la thèse est d'étudier les liens entre les singularités du spectre d'un Hamiltonien quantique contrôlé et les questions de contrôlabilité de l'équation Schr"odinger associée.La principale question qui se pose est de savoir comment contrôler une famille de systèmes quantiques dépendant des paramètres avec une entrée de commande commune. Ce problème de contrôlabilité d'ensemble est lié à la conception d'une stratégie de contrôle robuste lorsqu'un paramètre (une fréquence de résonance ou une inhomogénéité de champ de contrôle par exemple) est inconnu, et constitue un enjeu important pour les expérimentateurs.Grâce à l'étude des familles à un paramètre de Hamiltoniens et de leurs singularités génériques, nous donnons une stratégie de contrôle explicite pour le problème de contrôlabilité d'ensemble lorsque les conditions géométriques sur le spectre des Hamiltoniens sont satisfaites. Le résultat est basé sur la théorie de l'approximation adiabatique et sur la présence de courbes d'intersections coniques de valeurs propres du Hamiltonien contrôlé. La technique proposée fonctionne pour des systèmes évoluant à la fois dans des espaces de Hilbert de dimension finie et de dimension infinie. Nous étudions ensuite le problème de la contrôlabilité d'ensemble sous des hypothèses moins restrictives sur le spectre, à savoir la présence de singularités non-coniques. Sous des conditions génériques, de telles singularités n'apparaissent pas pour des systèmes uniques, mais apparaissent pour des familles de systèmes à un paramètre.Pour l'étude d'un système unique, nous nous concentrons sur une classe de courbes dans l'espace des contrôles, appelées les courbes non-mixantes (définies dans cite{Bos}), qui peuvent optimiser la dynamique adiabatique près des intersections coniques et non coniques. Elles sont liées à la géométrie des espaces propres du Hamiltonien contrôlé et l'approximation adiabatique possède une meilleure précision le long de celles-ci.Nous proposons d'étudier la compatibilité de l'approximation adiabatique avec la Rotating Wave Approximation. De telles approximations sont généralement combinées par les physiciens. Mon travail montre que cela ne se justifie pour les systèmes quantiques à dimensions finies que dans certaines conditions sur les échelles de temps. Nous étudions également les questions de contrôle d'ensemble dans ce cas. / The main purpose of the thesis is to study the links between the singularities of the spectrum of a controlled quantum Hamiltonian and the controllability issues of the associated Schr"odinger equation.The principal issue that is developed is how to control a parameter-dependent family of quantum systems with a common control input. This problem of ensemble controllability is linked to the design of a robust control strategy when a parameter (a resonance frequency or a control field inhomogeneity for instance) is unknown, and is an important issue for experimentalists.Thanks to the study one-parametric families of Hamiltonians and their generic singularities, we give an explicit control strategy for the ensemble controllability problem when geometric conditions on the spectrum of the Hamiltonian are satisfied. The result is based on adiabatic approximation theory and on the presence of curves of conical eigenvalue intersections of the controlled Hamiltonian. The proposed technique works for systems evolving both in finite-dimensional and infinite-dimensional Hilbert spaces. Then we study the problem of ensemble controllability under less restrictive hypotheses on the spectrum, namely the presence of non-conical singularities. Under generic conditions such non-conical singularities are not present for single systems, but appear for one-parametric families of systems.For the study of a single system, we focus on a class of curves in the space of controls, called the non-mixing curves (defined in cite{Bos}), that can optimize the adiabatic dynamics near conical and non-conical intersections. They are linked to the geometry of the eigenspaces of the controlled Hamiltonian and the adiabatic approximation holds with higher precision along them.We propose to study the compatibility of the adiabatic approximation with the rotating wave approximation. Such approximations are usually done in cascade by physicists. My work shows that this is justified for finite dimensional quantum systems only under certain conditions on the time scales. We also study ensemble control issues in this case.
|
Page generated in 0.0525 seconds