• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adsorption/Desorption Studies of Volatile Organic Compounds Generated from the Optoelectronics Industry by Zeolites

Hsu, Ching-shan 12 February 2006 (has links)
Adsorption/desorption behaviors of three volatile organic compounds (VOCs) emitted from the optoelectronics industry by Y-type and ZSM-5 zeolites were studied in this work. Target VOCs include acetone, isopropyl alcohol (IPA), and propylene glycol monomethyl ether acetate (PGMEA). Adsorption/desorption experiments were conducted in a fixed-bed column using various operating conditions to mimic the commercial ones. Also studied include the adsorption kinetics for single-component, two-component, and three-component cases. Experimental results of the single-adsorbate case by both model zeolites have shown that the amount of VOC adsorbed follows the order of PGMEA > IPA > Acetone. This is ascribed to the greatest molecular weight of PGMEA among three VOCs tested. The adsorption capacity of each zeolite for each target VOC was found to increase with its increasing initial concentration. Freundlich isotherm and Langmuir isotherm were found to be suitable for describing the adsorption behaviors for the single-adsorbate case. Results of the desorption experiments also showed that most of the target VOCs could be desorbed at 180¢J in 100 minutes. The adsorption capacities of the regenerated model zeolites were found to be decreasing as the regeneration times increased. As compared with the fresh ones, the regenerated zeolites had reduced specific surface areas, but increased pore sizes. In addition, the Yoon and Nelson equation was employed to study the kinetic behaviors of adsorbing the target VOCs by the model zeolites. A good agreement of the experimental results and predictions by the Yoon & Nelson model was obtained for the single-adsorbate case. However, the Yoon and Nelson model was found to be incompetent to simulate and predict all the multi-adsorbate cases including two-component adsorption and three-component adsorption in this work. Again, it is speculated that the displacement of lower-molecular-weight adsorbates (i.e., acetone and IPA) by PGMEA (an adsorbate of a much greater molecular weight) would be responsible for this finding. For the two-adsorbate case, nevertheless, the Yoon and Nelson equation was found to be capable of describing the adsorption behavior under the circumstance of C/C0 < 1.
2

Development of a Design-Based Computational Model of Bioretention Systems

Liu, Jia 03 December 2013 (has links)
Multiple problems caused by urban runoff have emerged as a consequence to the continuing development of urban areas in recent decades. The increase of impervious land areas can significantly alter watershed hydrology and water quality. Typical impacts to downstream hydrologic regimes include higher peak flows and runoff volumes, shorter concentration times, and reduced infiltration. Urban runoff increases the transport of pollutants and nutrients and thus degrades water bodies adjacent to urban areas. One of the most frequently used practices to restore the hydrology and water quality of urban watersheds is bioretention (also known as a rain garden). Despite its wide applicability, an understanding of its multiple physiochemical and biological treatment processes remains an active research area. To provide a wide ability to evaluate the hydrologic input to bioretention systems, spatial and temporal distribution of storm events in Virginia were studied. Results generated from long-term frequency analysis of 60-year precipitation data demonstrate that the 90 percentile, or 10-year return period rainfall depth and dry duration in Virginia are between 22.9 – 35.6 mm and 15.3 – 25.8 days, respectively. Monte-Carlo simulations demonstrated that sampling programs applied in different regions would likely encounter more than 30% of precipitation events less than 2.54 mm, and 10% over 25.4 mm. Further experimental research was conducted to evaluate bioretention recipes for retaining stormwater nitrogen (N) and phosphorus (P). A mesocosm experiment was performed to simulate bioretention facilities with 3 different bioretention blends as media layers with underdrain pipes for leachate collection. A control group with 3 duplicates for each media was compared with a replicated vegetated group. Field measurement of dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, and total dissolved solids (TDS) was combined with laboratory analyses of total suspended solids (TSS), nitrate (NO3), ammonium (NH4), phosphate (PO4), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) to evaluate the nutrient removal efficacies of these blends. Physicochemical measurements for property parameters were performed to determine characteristics of blends. Isotherm experiments to examine P adsorption were also conducted to provide supplementary data for evaluation of bioretention media blends. The results show that the blend with water treatment residuals (WTR) removed >90% P from influent, and its effluent had the least TDS / TSS. Another blend with mulch-free compost retained the most (50 – 75%) total nitrogen (TN), and had the smallest DO / ORP values, which appears to promote denitrification under anaerobic conditions. Increase of hydraulic retention time (HRT) to 6 h could influence DO, ORP, TKN, and TN positively. Plant health should also be considered as part of a compromise mix that sustains vegetation. Two-way analysis of variance (ANOVA) found that single and interaction effects of HRT and plants existed, and could affect water quality parameters of mesocosm leachate. Based upon the understanding of the physiochemical and hydrologic conditions mentioned previously, a design model of a bioretention system became the next logical step. The computational model was developed within the Matlab® programming environment to describe the hydraulic performance and nutrient removal of a bioretention system. The model comprises a main function and multiple subroutines for hydraulics and treatment computations. Evapotranspiration (ET), inflow, infiltration, and outflow were calculated for hydrologic quantitation. Biomass accumulation, nitrogen cycle and phosphorus fate within bioretention systems were also computed on basis of the hydrologic outputs. The model was calibrated with the observed flow and water quality data from a field-scale bioretention in Blacksburg, VA. The calibrated model is capable of providing quantitative estimates on flow pattern and nutrient removal that agree with the observed data. Sensitivity analyses determined the major factors affecting discharge were: watershed width and roughness for inflow; pipe head and diameter for outflow. Nutrient concentrations in inflow are very influential to outflow quality. A long-term simulation demonstrates that the model can be used to estimate bioretention performance and evaluate its impact on the surrounding environment. This research advances the current understanding of bioretention systems in a systematic way, from hydrologic behavior, monitoring, design criteria, physiochemical performance, and computational modeling. The computational model, combined with the results from precipitation frequency analysis and evaluation of bioretention blends, can be used to improve the operation, maintenance, and design of bioretention facilities in practical applications. / Ph. D.
3

Investigation Of Adsorption Of Pesticides By Organozeolite From Wastewater

Lule, Guzide Meltem 01 February 2012 (has links) (PDF)
The aim of this study was to determine the adsorption capacity of activated carbon and organo-zeolites for removal of pesticides in water. In order to prepare organo-zeolite, two kinds of cationic surfactants, namely, hexadecyltrimethyl ammonium bromide (HTAB) and dodecyltrimethyl ammonium bromide (DTAB) were used. Adsorption studies of cationic surfactant on zeolite were investigated in respect to initial concentration of cationic surfactant, time, and temperature. It has been found that the best fitted isotherm equation was Langmuir equation. The observed adsorption rates were found to be equal to the second order kinetic model. The activation energies of cationic surfactant adsorption was determined by using Arrhenius equation.

Page generated in 0.1101 seconds