Spelling suggestions: "subject:"anisotropic growth""
1 |
Coordination of tissue shape and size in the developing zebrafish neuroepitheliumMatejčić, Marija 27 November 2018 (has links)
For many developing tissues, their shape is established early in development and needs to be scaled isotropically during subsequent growth. The way by which cells inside tissues enable coordinated isotropic tissue scaling is not understood, however, as most studies focused on changing tissue shapes during development. In this study, I follow cell and tissue shape changes in the zebrafish retinal neuroepithelium, which forms a smooth cup early in development and maintains this architecture as it grows. By 3D tissue-wide analysis, I identify global cell elongation as a cellular mechanism that can maintain retinal shape during growth. Timely cell height increase occurs concurrently with a non-cell autonomous actin redistribution, during which the ratio of apico-basal to lateral actin intensity increases. Blocking actin redistribution and cell height increase perturbs isotropic tissue scaling and leads to a disturbed, folded tissue shape. Taken together, these data show how global changes in cell shape enable isotropic growth of the developing retinal neuroepithelium, a concept that could also apply to other systems.
|
Page generated in 0.05 seconds