• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study on Fuzzy Temporal Data Mining

Lin, Shih-Bin 06 September 2011 (has links)
Data mining is an important process of extracting desirable knowledge from existing databases for specific purposes. Nearly all transactions in real-world databases involve items bought, quantities of the items, and the time periods in which they appear. In the past, temporal quantitative mining was proposed to find temporal quantitative rules from a temporal quantitative database. However, the quantitative values of items are not suitable to human reasoning. To deal with this, the fuzzy set theory was applied to the temporal quantitative mining because of its simplicity and similarity to human reasoning. In this thesis, we thus handle the problem of mining fuzzy temporal association rules from a publication database, and propose three algorithms to achieve it. The three algorithms handle different lifespan definitions, respectively. In the first algorithm, the lifespan of an item is evaluated from the time of the first transaction with the item to the end time of the whole database. In the second algorithm, an additional publication table, which includes the publication date of each item in stores, is given, and thus the lifespan of an item is measured by its entire publication period. Finally in the third algorithm, the lifespan of an item is calculated from the end time of the whole database to its earliest time in the database for the item to be a fuzzy temporal frequent item within the duration. In addition, an effective itemset table structure is designed to store and get information about itemsets and can thus speed up the execution efficiency of the mining process. At last, experimental results on two simulation datasets compare the mined fuzzy temporal quantitative itemsets and rules with and without consideration of lifespans of items under different parameter settings.
2

Temporal Data Mining with a Hierarchy of Time Granules

Wu, Pei-Shan 28 August 2012 (has links)
Data mining techniques have been widely applied to extract desirable knowledge from existing databases for specific purposes. In real-world applications, a database usually involves the time periods when transactions occurred and exhibition periods of items, in addition to the items bought in the transactions. To handle this kind of data, temporal data mining techniques are thus proposed to find temporal association rules from a database with time. Most of the existing studies only consider different item lifespans to find general temporal association rules, and this may neglect some useful information. For example, while an item within the whole exhibition period may not be a frequent one, it may be frequent within part of this time. To deal with this, the concept of a hierarchy of time is thus applied to temporal data mining along with suitable time granules, as defined by users. In this thesis, we thus handle the problem of mining temporal association rules with a hierarchy of time granules from a temporal database, and also propose three novel mining algorithms for different item lifespan definitions. In the first definition, the lifespan of an item in a time granule is calculated from the first appearance time to the end time in the time granule. In the second definition, the lifespan of an item in a time granule is evaluated from the publication time of the item to the end time in the time granule. Finally, in the third definition, the lifespan of an item in a time granule is measured by its entire exhibition period. The experimental results on a simulation dataset show the performance of the three proposed algorithms under different item lifespan definitions, and compare the mined temporal association rules with and without consideration of the hierarchy of time granules under different parameter settings.

Page generated in 0.1007 seconds