• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of the gene responsible for fragrance in rice and characterisation of the enzyme transcribed from this gene and its homologs

Bradbury, Louis MT Unknown Date (has links)
The flavour or fragrance of Basmati rice is associated with the presence of 2-acetyl-1- pyrroline. This work shows that a gene with homology to betaine aldehyde dehydrogenase (BAD) has significant polymorphisms in the coding region of fragrant genotypes relative to non fragrant genotypes. Accumulation of 2-acetyl-1-pyrroline in fragrant rice genotypes may be explained by the presence of mutations resulting in loss of function of the fgr gene product. The fgr gene corresponds to the gene encoding BAD2 in rice while BAD1 is encoded by a gene on chromosome 4. Development of an allele specific amplification (ASA) based around the deletion in the gene encoding BAD2 allows, perfect, simple and low cost discrimination between fragrant and non-fragrant rice varieties and identifies homozygous fragrant, homozygous non-fragrant and heterozygous non-fragrant individuals in a population segregating for fragrance. The cDNAs transcribed from rice chromosomes 4 and 8, each encoding an enzyme with homology to betaine aldehyde dehydrogenase were cloned and expressed in E. coli. The enzyme responsible for fragrance, encoded from chromosome 8, had optimum activity at pH 10, showed low affinity towards betaine aldehyde (bet-ald) with Km value of approximately 63ìM but a higher affinity towards -aminobutyraldehyde (GABald) with a Km value of approximately 9ìM. The enzyme encoded from chromosome 4 had optimum activity at pH 9.5 and showed generally lower affinity towards most substrates compared to the enzyme encoded from chromosome 8, substrate specificities suggest that the enzymes have higher specificity to aminoaldehydes and as such both should be renamed as an aminoaldehyde dehydrogenase (AAD). The inactivation of AAD2 (BAD2) in fragrant rice varieties likely leads to accumulation of its main substrate GABald which then cyclises to 1-pyrroline the immediate precursor of 2AP.
2

Identification of the gene responsible for fragrance in rice and characterisation of the enzyme transcribed from this gene and its homologs

Bradbury, Louis MT Unknown Date (has links)
The flavour or fragrance of Basmati rice is associated with the presence of 2-acetyl-1- pyrroline. This work shows that a gene with homology to betaine aldehyde dehydrogenase (BAD) has significant polymorphisms in the coding region of fragrant genotypes relative to non fragrant genotypes. Accumulation of 2-acetyl-1-pyrroline in fragrant rice genotypes may be explained by the presence of mutations resulting in loss of function of the fgr gene product. The fgr gene corresponds to the gene encoding BAD2 in rice while BAD1 is encoded by a gene on chromosome 4. Development of an allele specific amplification (ASA) based around the deletion in the gene encoding BAD2 allows, perfect, simple and low cost discrimination between fragrant and non-fragrant rice varieties and identifies homozygous fragrant, homozygous non-fragrant and heterozygous non-fragrant individuals in a population segregating for fragrance. The cDNAs transcribed from rice chromosomes 4 and 8, each encoding an enzyme with homology to betaine aldehyde dehydrogenase were cloned and expressed in E. coli. The enzyme responsible for fragrance, encoded from chromosome 8, had optimum activity at pH 10, showed low affinity towards betaine aldehyde (bet-ald) with Km value of approximately 63ìM but a higher affinity towards -aminobutyraldehyde (GABald) with a Km value of approximately 9ìM. The enzyme encoded from chromosome 4 had optimum activity at pH 9.5 and showed generally lower affinity towards most substrates compared to the enzyme encoded from chromosome 8, substrate specificities suggest that the enzymes have higher specificity to aminoaldehydes and as such both should be renamed as an aminoaldehyde dehydrogenase (AAD). The inactivation of AAD2 (BAD2) in fragrant rice varieties likely leads to accumulation of its main substrate GABald which then cyclises to 1-pyrroline the immediate precursor of 2AP.

Page generated in 0.0369 seconds