1 |
Modeling And Simulation Of Shaped ChargesGurel, Eser 01 June 2009 (has links) (PDF)
Shaped charges are explosive devices with a high penetration capability and are used for both civilian and military purposes. In civilian applications shaped charge devices are used in demolition works, oil drilling and mining. In the military applications, shaped charges are used against different kinds of armors, primarily as anti-tank devices.
This thesis work involves the modeling and simulation of shaped charge devices, with the focus being on anti-tank warhead design. Both numerical simulation and analytical calculation methods are used to predict shaped charge performance / in the aspects of jet formation, breakup and penetration. The results are compared within themselves and with the data available in the literature.
AUTODYN software is used for the numerical simulations. Different solver and modeling alternatives of AUTODYN are evaluated for jet formation and penetration problems. AUTODYN&rsquo / s Euler solver is used to understand how the jet formation is affected by the mesh size and shape and the presence of air as the surrounding medium. Jetting option in the AUTODYN-Euler simulations are used to simulate jet formation as an alternative to simulations performed using AUTODYN&rsquo / s Euler solver. In the jetting option liner elements are modeled as Lagrangian shell elements, rather than Eulerian elements.
Analytical codes are written to study the jet formation, breakup and penetration processes. Many alternative formulas that can be used in the analytical calculations are listed and discussed. Parameters of these formulas are varied to investigate their effects on the results. Necessary constants for the analytical formulas are obtained using the results of AUTODYN simulations.
|
2 |
MODELING OF LIQUID SLOSH AND CAVITATION IN AUTOINJECTORSYuchen Zhang (10765359) 07 May 2021 (has links)
<div><br></div><div> Today, autoinjectors are developed for more viscous drug solutions, which require larger forces for actuating the syringe and impose larger stresses on the drug solution during the administration of autoinjectors. We developed experimentally validated high-fidelity simulations to investigate the liquid jet formation, liquid slosh and cavitation during the insertion process of an autoinjector. </div><div> </div><div> The jet formed due to an acceleration-deceleration motion of syringe is found to be governed by the interplay between inertial, viscous, surface tension and gravitational forces. A scaling for the jet velocity and a criterion for the jet breakup in a simplified geometry are proposed.</div><div> </div><div> When the syringe accelerates and decelerates during the insertion, liquid slosh occurs and there is a vehement motion of the air-liquid interface. Here, we quantified the area of air-liquid interface and hydrodynamic strain rate, which increase with the air gap size, syringe velocity, tilt angle and inner wall hydrophobicity, and decrease with the solution viscosity and hardly change with the liquid column height and surface tension. The strain rate is not sufficient to unfold the protein and the air-liquid interface is more likely to cause protein aggregation.</div><div> </div><div> In a spring-driven autoinjector, the plunger is actuated by the impact of a driving rod, which generates a strong pressure wave and can cause cavitation inception. The cavtiation bubbles can be impeded by the syringe walls and form a re-entrant jet shooting toward the syringe wall. During the process, the protein molecules are focused in the jet, pushed toward the syringe wall and spread across the wall, which can be the reason for the protein aggregation and adsorption on the syringe walls. The impedance effects of the wall decreases with the wall distance and increases with the maximum bubble size. The maximum bubble radius also increases with the liquid column size and nucleus size and decreases with the air gap pressure. Since inertia effects dominate in the cavitation process, the liquid viscosity and surface tension hardly changes the cavitation bubble dynamics. Small bubbles can also form in the bulk, which may generate aggregates in the bulk solution. Bubbles in the cavitation bubble cloud may coalesce with nearby bubbles and induce a higher pressure at the collapse (up to 1000 bar). This high pressure can potentially generate hydroxyl radicals that oxidize the protein molecules.</div><div> </div><div> The current study presents a detailed picture of fluid flows in autoinjectors and provide recommendations for mitigating the liquid slosh and cavitation generated in syringes. The results can be combined with future experiments to understand the implications of fluid flows on protein drugs and the performance of autoinjectors.</div>
|
3 |
The influence of droplet shape on maximum cavity depth and singular jet velocity during the impact of ferrofluidKattoah, Moaz 09 1900 (has links)
This thesis studies a droplet of ferrofluid impacting a liquid water pool.
The ferrofluid is oil-based and therefore immersible in water. The shape of
the ferrofluid drop at impact is changed by using an electromagnet underneath
the liquid pool. The magnet is turned off by an external trigger just before the
drop collides with the liquid pool surface, to stop the magnetic interaction. The
prolate or oblate shape of the drop has an influence on the cavity formation and
evolution after the impact. The experiments look specifically at the maximum
depth and diameter of the cavity, as a function of the drop impact shape for the
same impact velocity. This is done over a range of impact velocities. The prolate
drops generate deeper cavities than spherical or oblate drops. Furthermore, a
study is conducted on the jet formation that occurs during the cavity collapse to
investigate the influence of droplet shape on the jet velocity.
|
4 |
Macro cavidades em líquidos: visualização e fenomenologia / Macro cavities in liquids: visualization and phenomenologyPereira, Pedro Augusto Fernandes 20 November 2018 (has links)
Devido à importância de cavidades de vapor em meios líquidos, para áreas como transferência de calor e de escoamento em tubos (nos quais elas podem causar sérios danos), o processo de formação e colapso de bolhas tem sido largamente estudado, e boa parte do que ocorre em escala micro já foi reportado. Nos últimos anos, novos estudos no campo têm demonstrado que cavidades de diâmetro não desprezível (chegando a dezenas de centímetros), podem ser geradas em condições controladas. O mecanismo dos experimentos de formação dessas cavidades se aproveita do fato de que substâncias puras (ou quase puras) podem ser mantidas como líquido em temperaturas bem acima das de mudança de fase, e a transição de fase propriamente dita necessita de um mecanismo facilitador ou um ponto de iniciação, de modo que um estado superaquecido pode ser mantido por muito tempo até que essa condição seja alcançada, gerando uma mudança de fase extremamente rápida, e muitas vezes explosiva. As chamadas macro cavidades, geradas por esse processo, possuem uma dinâmica geral de formação e colapso bem semelhante as que ocorrem em escala micro, porém uma série de outros aspectos podem ser observadas nas mesmas, tais como formação de jato central e de película de líquido ascendente junto a parede. Esses aspectos específicos do escoamento, embora descritos em trabalhos anteriores, ainda não foram completamente compreendidos, e se mostram como um desafio na reprodução dos experimentos e na quantificação de força útil gerada. Dessa forma, este estudo se propõem ao melhor entendimento desses detalhes específicos acerca das macro cavidades. Através de filmagens em alta velocidade dos experimentos, e da análise dos dados gerados por essas filmagens, foi realizada uma análise dos mecanismos envolvidos na formação dos jatos centrais e dos filmes ascendentes, comparando a forma como esses efeitos se dão para o caso de macro cavidades com o relatado na bibliografia para casos semelhantes. A fim de facilitar a compreensão da física por trás dos mecanismos de amplificação de ondas, um modelo simplificado da instabilidade de Rayleigh-Taylor aplicado ao fenômeno também foi abordado. / Because of the importance of vapor cavities in liquid, for areas such as heat transfer and pipe flow (in which they can cause serious damage), the process of formation and collapse of bubble has been largely studied, and much of what occurs on a micro scale has already been reported. In recent years new studies in the field have shown that cavities of non-negligible diameter (up to tens of centimeters) can be generated under controlled conditions. The mechanism for the experiments of cavity formation takes advantage of the fact that pure (or near pure) substances can be kept as liquid at temperatures well above the phase change, and the phase transition itself requires a facilitating mechanism or a starting point, such that an overheated state can be maintained for a long time until this condition is reached, generating an extremely rapid, and often explosive, phase change. The so-called macro cavities, generated by this process, have a general dynamics of formation and collapse very similar to those that occur in micro scale, but a number of other aspects can be observed in them, such as formation of central jet and a liquid climbing film close to the wall. These specific aspects of the flow, although described in previous work, have not yet been fully understood, and are shown as a challenge in the reproduction of experiments and in the quantification of useful force generated. Thus, this study proposes to better understand these specific details about the macro cavities. Through high speed filming of the experiments and analysis of the data generated by these films, an analysis was made of the mechanisms involved in the formation of the central jets and the climbing films, comparing the way these events occur in the case of macro cavities, with the reported in the bibliography for similar cases. In order to facilitate the understanding of the physics behind the mechanisms of wave amplification, a simplified model of Rayleigh-Taylor instability applied to the phenomenon was also addressed.
|
5 |
Macro cavidades em líquidos: visualização e fenomenologia / Macro cavities in liquids: visualization and phenomenologyPedro Augusto Fernandes Pereira 20 November 2018 (has links)
Devido à importância de cavidades de vapor em meios líquidos, para áreas como transferência de calor e de escoamento em tubos (nos quais elas podem causar sérios danos), o processo de formação e colapso de bolhas tem sido largamente estudado, e boa parte do que ocorre em escala micro já foi reportado. Nos últimos anos, novos estudos no campo têm demonstrado que cavidades de diâmetro não desprezível (chegando a dezenas de centímetros), podem ser geradas em condições controladas. O mecanismo dos experimentos de formação dessas cavidades se aproveita do fato de que substâncias puras (ou quase puras) podem ser mantidas como líquido em temperaturas bem acima das de mudança de fase, e a transição de fase propriamente dita necessita de um mecanismo facilitador ou um ponto de iniciação, de modo que um estado superaquecido pode ser mantido por muito tempo até que essa condição seja alcançada, gerando uma mudança de fase extremamente rápida, e muitas vezes explosiva. As chamadas macro cavidades, geradas por esse processo, possuem uma dinâmica geral de formação e colapso bem semelhante as que ocorrem em escala micro, porém uma série de outros aspectos podem ser observadas nas mesmas, tais como formação de jato central e de película de líquido ascendente junto a parede. Esses aspectos específicos do escoamento, embora descritos em trabalhos anteriores, ainda não foram completamente compreendidos, e se mostram como um desafio na reprodução dos experimentos e na quantificação de força útil gerada. Dessa forma, este estudo se propõem ao melhor entendimento desses detalhes específicos acerca das macro cavidades. Através de filmagens em alta velocidade dos experimentos, e da análise dos dados gerados por essas filmagens, foi realizada uma análise dos mecanismos envolvidos na formação dos jatos centrais e dos filmes ascendentes, comparando a forma como esses efeitos se dão para o caso de macro cavidades com o relatado na bibliografia para casos semelhantes. A fim de facilitar a compreensão da física por trás dos mecanismos de amplificação de ondas, um modelo simplificado da instabilidade de Rayleigh-Taylor aplicado ao fenômeno também foi abordado. / Because of the importance of vapor cavities in liquid, for areas such as heat transfer and pipe flow (in which they can cause serious damage), the process of formation and collapse of bubble has been largely studied, and much of what occurs on a micro scale has already been reported. In recent years new studies in the field have shown that cavities of non-negligible diameter (up to tens of centimeters) can be generated under controlled conditions. The mechanism for the experiments of cavity formation takes advantage of the fact that pure (or near pure) substances can be kept as liquid at temperatures well above the phase change, and the phase transition itself requires a facilitating mechanism or a starting point, such that an overheated state can be maintained for a long time until this condition is reached, generating an extremely rapid, and often explosive, phase change. The so-called macro cavities, generated by this process, have a general dynamics of formation and collapse very similar to those that occur in micro scale, but a number of other aspects can be observed in them, such as formation of central jet and a liquid climbing film close to the wall. These specific aspects of the flow, although described in previous work, have not yet been fully understood, and are shown as a challenge in the reproduction of experiments and in the quantification of useful force generated. Thus, this study proposes to better understand these specific details about the macro cavities. Through high speed filming of the experiments and analysis of the data generated by these films, an analysis was made of the mechanisms involved in the formation of the central jets and the climbing films, comparing the way these events occur in the case of macro cavities, with the reported in the bibliography for similar cases. In order to facilitate the understanding of the physics behind the mechanisms of wave amplification, a simplified model of Rayleigh-Taylor instability applied to the phenomenon was also addressed.
|
6 |
Etude d'un nouveau dispositif de bioimpression par laser / Study of a novel configuration of laser Assisted BioprintingAli, Muhammad 23 June 2014 (has links)
Les technologies laser sont largement utilisées dans le contexte de l'impression 3D de matériaux de toute taille ainsique pour la bioimpression des constituants de tissue biologiques. Dans ce contexte, la bioimpression par laser (LAB), basée sur le procédé LIFT, a émergé comme une technique permettant de s'affranchir des inconvénients des technologies d'impression à jet d'encre(par exemple le colmatage). La bioimpression par Laser est une technique d'écriture directe de matériaux sous forme solide ou liquide dotée d'une haute résolution spatiale. La technique permet ainsi le transfert précis de microgouttelettes (volume de l'ordre du pL) de biomatériaux et de cellules sur un substrat de réception. Dans nos travaux de recherche, afin de mieux comprendre la dynamique du processus de transfert et d'utiliser la technique en ingénierie tissulaire, nous avons avons développé une approche expérimentale basée sur une méthode d'imagerie résolue en temps. Nous avons tout d'abord caractérisé les différents régimes d'éjection afin de définir des conditions appropriées à l'impressiond'éléments biologiques. Nous avons également exploré la fenêtre d'éjection, afin d'étudier l'influence de l'énergie laser sur la dynamique de jet. Ensuite, nous avons étudié une nouvelle de configuration bioimpression par laser pour laquelle des études paramétriques impliquant l'effet de la viscosité et de la distance d'impression sur la morphologie des gouttes imprimées ont été réalisées. Cette configuration permet d'imprimer des encres biologiques en obtenant des contours très lisses et uniformes jusqu’à une grande distance de séparation (≤10 mm). Les paramètres d'impression de cellules ont aussi été analysées par TRI en fonction de la concentration cellulaire des encres. Nos résultats fournissent des renseignements clés sur l'optimisation et devraient permettre un meilleur contrôle du mécanisme de transfert du processus de LAB. Enfin à la lumière de ces études, nous proposons un mécanisme complet pour la bioimpression par laser. / Laser-based approaches are among the pioneering works in cell printing. These techniques are being extensively focussed for two or three-dimensional structures of any size in transferring pattern materials including deposition of 3D biological constructs. In this context, Laser-Assisted Bioprinting (LAB), based on Laser-Induced Forward Transfer (LIFT) has emerged as a nozzleless method to surmount the drawbacks (e.g. clogging) of inkjet printing technologies. LAB is a laser direct-write technique that offers printing micropatterns with high spatial resolution from a wide range of solid or liquid materials, such as dielectrics, biomaterials and living cells. The technique enables controlled transfer of droplets onto a receiving substrate. A typical LAB setup comprises three key components: (i) a pulsed laser source, (ii) a ribbon coated with the material to be transferred and (iii) a receiving substrate. The ribbon integrates three layers: (i) a quartz disk support transparent to laser wavelength, (ii) a thin (1–100 nm) absorbing layer (like Ti or Au), and (iii) a bioink layer (few tens of microns) incorporating the material to print. The receiving substrate is faced to the bioink and placed at 100 μm to 1 mm distance from the ribbon. Rapid thermal expansion of metallic layer (on absorbing laser pulse) propels a small volume (~pL) of the ink towards a receiving substrate. Such a metallic interlayer eliminates direct interaction between the laser beam and the bioink. Volume of deposited material depends linearly on the laser pulse energy, and that a minimum threshold energy is required for microdroplet ejection. The thickness of the absorbing layer, viscosity and thickness of the bioink, different optical parameters such as the focus spot and the laser fluence are the controlling parameters to obtain a microscopic resolution and to limit the shock inflicted on the ejected cells. In our research works, we considered experimental approach to study the physical mechanism involved in the LAB using a time-resolved imaging method in order to gain a better insight into the dynamics of the transfer process and to use the technique for printing biomaterials. First we designed and implemented a novel configuration of LAB for upward printing. Then we characterized different ejection regimes to define suitable conditions for bioprinting. We further explored jetting window to study the influence of laser energy on jet dynamics. Ejection dynamics has been investigated by temporal evolution of the liquid jet for their potential use in cell printing. In addition parametric studies like effect of viscosity and printing distance on the morphology of the printed drops were conducted to explore jetting “window”. This configuration allows debris-free printing of fragile bioinks with extremely smooth and uniform edges at larger separation distance (ranging from 3 to 10mm). Material criteria required for realization of the cell printing are discussed and supported by experimental observations obtained by TRI investigation of cell printing from donors with different cell concentrations. These results provide key insights into optimization and better control of transfer mechanism of LAB. Finally, in the light of these studies, a comprehensive mechanism is proposed for printing micro-drops by LAB.
|
7 |
<strong>PRE-CHAMBER JET IGNITION IN AN OPTICALLY-ACCESSIBLE CONSTANT-VOLUME GASOLINE ENGINE</strong>Dong Eun Lee (16637403) 08 August 2023 (has links)
<p>In Chapter 2, an experiment has been developed to investigate the passive pre-chamber jet ignition process in gasoline engine configurations and low-load operating conditions. The apparatus adopted a modified 4-cylinder 2.0L gasoline engine to enable single-cylinder operation. To reduce the complexity, the piston position was fixed at a predefined position relative to the top dead center (TDC) to simulate thermodynamic conditions at ignition and injection timings. High-speed Infrared (IR) imaging was applied to visualize the jet penetration and ignition process inside the main cylinder and to investigate the cyclic spatial variability. Two passive pre-chambers with different total nozzle areas and numbers of nozzles were used. In addition, the pre-chamber volume and pressure at ignition timing were varied to examine their effect on jet ignition performance. Misfire behavior was observed in the main chamber of all test cases, and the results suggested that the main cause is a high Residual Mass Fraction (RMF) in the pre-chamber affecting the subsequent cycle. A larger total nozzle area, smaller volume, higher pressure, and fuel-lean operation tended to mitigate the misfire behavior. For a test case with a spark pressure of 6 bar, a reduced cyclic variability in terms of coefficient of variation peak cylinder pressure (COVPmax) from 10.03% to 7.38% and combustion phasing variation from 81 crank angle degree (CAD) to 12 CAD were observed with increasing pre-chamber volume-to-area (V/A) ratio from 59.37 m to 103.11 m, but slightly higher misfire frequency was observed, from 46.67% to 50.00%, suggesting an accurate combination of pre-chamber design parameters is needed to improve overall performance at low-load operation.</p>
<p>In Chapter 3, it examines the influence of passive pre-chamber nozzle diameter and dilution level on jet formation and engine performance. Utilizing a modified constant-volume gasoline direct injection engine with an optically-accessible piston, we tested three passive pre-chambers with nozzle diameters of 1.2, 1.4, and 1.6 mm, while nitrogen dilution varied from 0 to 20%. With the help of high-speed imaging, we captured pre-chamber jet formations and subsequent flame propagation within the main chamber. Our novel findings reveal that asymmetric temporal and spatial jet formation patterns arising from pre-chambers significantly impact engine performance. The larger nozzle diameter pre-chambers exhibited the least variation in jet formation due to their improved scavenging and main mixture filling processes, but had the slowest jet velocity and lowest jet penetration depth. At no dilution condition, the 1.2 mm-PC demonstrated superior performance attributed to higher pressure build-up in the pre-chamber, resulting in accelerated jet velocity and increased jet penetration depth. However, at high dilution condition, the 1.6 mm-PC performed better, highlighting the importance of scavenging and symmetry jet formation. This study emphasizes the importance of carefully selecting the pre-chamber nozzle diameter, based on the engine's operating conditions, to achieve an optimal and balanced configuration that can improve both jet formation and jet characteristics, as well as scavenging.</p>
<p>In Chapter 4, it investigates the influence of passive pre-chamber nozzle diameter on jet ignition and subsequent main chamber combustion under varying load conditions and dilution levels using a constant-volume optical gasoline direct injection engine. The results reveal that as the load decreases, both fuel availability and flow conditions deteriorate, leading to delayed and inferior jet characteristics that affect main chamber ignition and combustion processes. In high and medium load conditions without dilution, the smallest nozzle diameter pre-chamber (1.2mm-PC) shows improved jet ignition and main combustion due to earlier jet ejection, enhanced penetration, and intensified jet. This is facilitated by the smaller nozzle diameter enabling faster and higher pre-chamber pressurization. Conversely, under low load conditions, the largest nozzle diameter pre-chamber (1.6mm-PC) performs better, likely due to improved scavenging and reduced residual levels, resulting in less compromised pre-chamber combustion and subsequent jet characteristics. The nozzle diameter also has a significant impact on cycle-to-cycle variations, with smaller diameters enhancing jet ignition performance but increasing variability. The effect of external residuals (dilution) on jet ignition performance varies depending on the nozzle diameter, with the 1.6mm-PC exhibiting less degradation and demonstrating earlier jet ejection and CA50 timing compared to smaller nozzle diameter pre-chambers at higher dilution conditions. The improved scavenging and relatively lower residual levels in the larger nozzle diameter pre-chamber contribute to its increased resistance to dilution and potential extension of dilution tolerance.</p>
<p>In Chapter 5, it presents an analysis of the effects of pre-chamber nozzle orientation on dilution tolerance in a constant-volume optical engine. Using a combination of experimental and numerical methodologies, we provide novel insights into how variations in nozzle number, orientation, and size influence combustion performance under different dilution conditions. The findings reveal that an increase in the number of nozzles, for a fixed A/V ratio, tends to enhance ignition performance and stability across a range of dilution scenarios, primarily due to an increase in ignition points and a larger ignition surface area. Meanwhile, swirling pre-chambers, despite their potential to boost initial combustion performance at no dilution condition, may limit dilution tolerance due to the complexity of their internal flow dynamics and increased heat loss through nozzle surfaces. Furthermore, pre-chambers combining swirling and straight nozzle orientations fail to synergize the benefits of each type, and instead, exacerbate challenges such as heat loss, flame quenching, and unfavorable flow dynamics. These findings emphasize the complexity and nuanced trade-offs involved in optimizing pre-chamber design for improved dilution tolerance and suggest potential directions for future research in this area.</p>
<p>In Chapter 6, it investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically-accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0 to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37-43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited. The study identified that increasing pre-chamber nozzle diameter resulted in a larger dispersion of knock cycles and more severe knock intensity, likely due to shorter jet penetration depth requiring more time for end-gas consumption. Strategies for mitigating knock in pre-chamber combustion systems include reducing the pre-chamber volume for a fixed A/V ratio and increasing dilution level. The results of this study offer valuable insights for developing effective knock mitigation approaches in pre-chamber combustion systems, contributing to the advancement of more efficient and reliable engines.</p>
<p>In Chapter 7, a numerical investigation of different premixed gaseous injection strategies was performed to understand their impact on the scavenging and mixture formation of an air-fuel premixed pre-chamber with high exhaust gas recirculation (EGR) operations. EGR dilution is effective for reducing coolant heat loss, pumping work at throttled conditions, and mitigates knock at high-load conditions, thus increasing engine efficiency. To further extend the EGR limit of an air-fuel premixed pre-chamber engine, the effects of different injection strategies (including timing, duration, pressure, pre-chamber volume, and hardware) on the EGR level, trap efficiency, and parasitic loss were determined. Regardless of injection duration and upstream pressure, injecting too early not only increased the amount of the injected premixed gas leaking into the main chamber but also was inefficient in reducing the EGR level in the pre-chamber. To reduce the EGR level in the pre-chamber to a level where successful ignition and combustion of the pre-chamber mixture is possible, the injection timing should be delayed to be close to the ignition timing. A premixed air-fuel injection is thus proposed to reduce the time required for air-fuel mixing in the pre-chamber. With a delayed end of injection (EOI), both leakage amount and EGR level were reduced compared to the cases with earlier injection timings. The results show that an injection with 15 bar upstream pressure, 20 CA duration, EOI of −20 CAD aTDC (ignition timing), and with guided injection hardware for the base pre-chamber volume resulted in about 0.17% air compression parasitic loss, over a 94% trap efficiency, at the same time maintaining the mean EGR level in the pre-chamber below 20%, ensuring good pre-chamber combustion. With a 50% increase in pre-chamber volume from the base case, the parasitic loss increased by 65% (from 0.17% to 0.28% loss), indicating a problem with a larger pre-chamber with a separate air valve and injector.</p>
|
Page generated in 0.679 seconds