1 |
Investigation of Noise Sources in Three-Stream Jets using Turbulence CharacteristicsStuber, Marcie Alberta 28 March 2017 (has links)
Key areas of noise sources are investigated through comparison of eddy convection velocity and turbulence measurements in three-stream nozzles. A Time-Resolved Doppler Global Velocimetry (TR-DGV) Instrument was applied to the Nozzle Acoustic Test Rig (NATR) at NASA's Aero-Acoustic Propulsion Lab (AAPL) to measure convection velocity. Particle image velocimetry (PIV) measurements provided mean velocity and turbulence intensity. Eddy convection velocity results were obtained from the TR-DGV data for three-stream nozzle configurations using a cross-correlation approach. The three-stream cases included an axisymmetric and an asymmetric nozzle configuration. Results of the VT TR-DGV convection velocity were compared to NASA PIV mean and turbulence intensity data. For the axisymmetric case, areas of high convection velocity and turbulence intensity were found to be from 4 to 6 diameters downstream. Comparison of convection velocity between the axisymmetric and offset case show this same region as the greatest reduction in convection velocity due to the offset. These findings suggest this region along the centerline near the end of the potential core is an important area for noise generation with jets and contribute to the noise reductions seen from three stream offset nozzles. An analysis of a one-dimensional wavepacket model was completed to provide understanding of the effect of the various convection velocities seen in the flow. Comparison of a wavepacket with a convection velocity of 0.6Uj to a wavepacket with a convection velocity of 0.8Uj showed that an increase in convection velocity shifts the wavenumber spectrum to higher wavenumbers as expected. It was also observed that for the higher convection velocity wavepacket, higher frequencies are more acoustically efficient, while mid frequencies are the most efficient radiators in the lower convection velocity case. Using mean velocity, turbulence intensity, and convection velocity areas of likely to generate noise are identified and possible fundamental mechanisms responsible for the noise generation are discussed. / Master of Science / Noise from the jet exhaust plumes of aircraft engines continues to be a problem in the aerospace field, specifically for applications where high speeds and temperatures are required. This study works to identifity the noise producing areas in a high speed, heated jet plume for a new type of exhaust nozzle configurations. Identification of the noise producing regions will allow desing of quieter aircraft engines. Traditionally, there are two streams in the exhaust of aircraft engines. This research is a study of a new exhaust nozzle configuration with an additional third exhaust stream. Specifically, two three-stream nozzle configurations are studied: one that is symmetric and one with the third stream shifted relative to the other exhast streams which is called the offset configuration. Past studies have shown that three stream jets and offset three stream jets offer noise reductions. Of the two configurations studied, the offset configuration offers greater potential for noise reduction. The flow field of three stream jet and a three stream shifted jet are analyzed. Flow properites relating to the speed of the jet, the level of turbulence, and the speed at which flow structures convect are analyzed for the symmetric three stream nozzle. The region along the jet centerline is identified as a likely noise producing area based on analysis of the flow properties. Comparison of the three stream symmetric configuration with the three stream offset configuration shows the offset configuration reduces the convection speed of structure along the jet centerline. This reduction in convection velocity is an explanation for the noise reduction caused by the offset nozzle configuration. A simple mathematical model to describe how the flow structures convect is developed in order to better understand how the differenct convection speeds observed impact noise production. Many researchers in the past have suggested that the area of high shearing caused by the velocity difference between the jet and the surrounding is the dominant noise producing region, however, analysis of the experiemental results from this research has found the centerline region as a likely noise producing region. Results from the model, therefore, were obtained for both the high shearing region and the centerline region previously identified for both jet configurations. It was found that the region along the centerline showed a greater difference in likeliness to produce noise, further suggesting that the reigon along the centerline is important for noise production.
|
2 |
The Effect of Thermal Non-Uniformity on Coherent Structures in Supersonic Free JetsTang, Joanne Vien 28 June 2023 (has links)
Supersonic jet exhaust plumes produce noise in jet engines, which has been a problem in the aerospace field. Researchers are working on ways to reduce this turbulent mixing noise, with little modification to the engine and nozzle. Prior work has shown that total temperature non-uniformity is a noise reduction technique which introduces a stream of cold flow into the heated jet. This method has been shown to cause changes in the exhaust plume and result in a 2±0.5 dB reduction of peak sound pressure levels. The goal of this work is to reveal underlying changes in the spatial-temporal structure of plume instability and turbulence caused by non-uniform total temperature distributions. Studies have demonstrated several methods of jet noise reduction by modifying the turbulent mixing in the exhaust plume. Large-scale turbulent structures have been shown to be the dominant source of noise in heated supersonic jets, especially over long, streamwise distances. Therefore, a large field-of-view measurement is desirable for studying these structures. Time-Resolved Doppler Global Velocimetry (TR-DGV) with a sampling frequency of 50 kHz is used to collect flow velocity data that is resolved in both time and space. The experiments for data collection were performed on a heated supersonic jet at the Virginia Tech Advanced Propulsion and Power Laboratory. A converging-diverging nozzle with a diameter Reynolds number of 850,000 was used to generate a perfectly expanded, heated flow of Mach 1.5 and a nozzle pressure ratio (NPR) of 3.67. The unheated plume was introduced at the center of the nozzle, with a total temperature ratio (TTR) of 2. Comparison of the mean velocity fields shows that the introduction of the cooler temperature flow in the thermally non-uniform case results in a velocity deficit of about 10% compared to the thermally uniform case. The method of spectral proper orthogonal decomposition (SPOD) was used to reveal the large-scale, coherent noise producing mechanisms. SPOD results indicate that the thermally non-uniform case showed a decrease in turbulent kinetic energy compared to the uniform case at all frequencies. Coherent fluctuations start developing further upstream in the thermally non-uniform case. The addition of the unheated plume results in a disruption in the propagation of the Mach waves from the shear layer into the ambient. The results indicate that the total temperature non-uniformity results in a modified exhaust plume and mean flow distribution at the nozzle exit, compared to that of a thermally uniform flow, which past studies have indicated is a method to reduce jet noise. / Master of Science / Supersonic jet exhaust plumes produce noise in jet engines, which has been a problem in the aerospace field. Researchers are working on ways to reduce this turbulent mixing noise, with little modification to the engine and nozzle. Traditionally, nozzles produce a single stream of uniform temperature flow. This work identifies a method of reducing jet noise, known as thermal non-uniformity. A stream of cold flow is introduced at the center of the nozzle. Applying this method to jet engines can result in quieter aircraft. Large-scale turbulent structures are the dominant noise producing source in supersonic free jets. To further understand the relationship between coherent structures and acoustic jet noise, spectral analysis is used to educe these structures from the flow. This study uses velocity data collected using Time-Resolved Doppler Global Velocimetry (TR-DGV). The study compares the results of a thermally uniform and a thermally non-uniform heated supersonic jet of Mach 1.5. The goal of this study is to determine the effects of thermal non-uniformity on large-scale coherent structures using a modal decomposition analysis known as spectral proper orthogonal decomposition (SPOD). The results from this study show that the thermally non-uniform cases contained less turbulent kinetic energy compared to the thermally uniform cases. Coherent fluctuations start developing further upstream in the thermally non-uniform case. The addition of the unheated plume results in a disruption in the propagation of the Mach waves from the shear layer into the ambient. The results indicate that the total temperature non-uniformity results in a modified exhaust plume and mean flow distribution at the nozzle exit, compared to that of a thermally uniform flow, which past studies have indicated is a method to reduce jet noise.
|
3 |
Réponse d'un jet rond subsonique à une excitation fluidique stationnaire et instationnaire / Response of a subsonic round jet to steady and unsteady fluidic actuationMaury, Rémy 25 October 2012 (has links)
Ce travail tente d'analyser la réponse d'une jet axisymétrique turbulent à une excitation fluidique stationnaire et instationnaire lorsque le contenu fréquentiel et aziumutal (!,m) de la perturbation est maîtrisé. Le dispositif de contrôle utilisé est composé de 16 microjets ronds répartis sur le bord de fuite de la tuyère. L'utilisation des microjets provoque une réduction du champ acoustique rayonné (particulièrement pour le cas de contrôle stationnaire). Le champ aérodynamique est ensuite sondé grâce à des mesures fil chaud et PIV stéréoscopique résolue en temps. L'excitation instationnaire permet d'utiliser les moyennes de phase afin d'effectuer une décomposition triple du champ de vitesse. L'étude de la composante cyclique de la “réponse du jet” montre une synchronisation spatio-temporelle importante sur une grande étendue spatiale. En d'autres mots, le forçage a une grande autorité déterministe sur l'écoulement. De plus, la comparaison de la composante cyclique de la réponse du jet avec la théorie de la stabilité linéaire indique qu'il existe des ondes d'instabilité hydrodynamique au sein du jet. L'analyse du jet contrôlé par injection fluidique stationnaire montre ensuite comment l'effet du contrôle peut être expliqué par la déformation du champ moyen conduisant à la réduction du taux de croissance des ondes d'instabilité dans le jet. Cette déformation est dûe à l'introduction d'un couple de paramètre (nombre d'onde/fréquences) pour lequel le champ moyen de l'écoulement est stable. La réponse du jet étant turbulente, cela implique que les tensions de Reynolds déforment le champ moyen de manière à ce que les modes les plus instables aient des taux de croissance plus faibles. / This work investigates the response of an axisymetric turbulent jet to steady and unsteady fluidic florcing where the azimuthal wavenumber-frequency (!,m) content of the perturbation is well known. The control setup is composed of 16 round microjets azimutally distributed around the nozzle lip. Such actuation can lead to a decrease in the acoustic energy radiated by the jet (especially for the steady case). The aerodynamic fied is investigated using hotwire measurements and time-resolved stereoscopic PIV. Using the unsteady forcing, phase-averaging is possible, and this allows the implementation of a triple decomposition of the measurements. Examination of the cyclic component of the flow response shows that a non-negligible phase-locked fluctuation is obtained over a large spatial extent, in other words, the actuation has good deterministic control authority over the flow. Furthermore, comparison of the cyclic component of the flow response with Linear Stability Theory supports the idea that the jet response comprises linear hydrodynamic instability waves. Subsequent analysis of jets controlled by steady fluidic actuation shows how the control effect can be explained by a mean-flow modification that leads to the reduction of instability-wave growth rates ; the mean flow modification is argued to be due to the introduction of azimuthal wavenumber-frequency pairs to which the mean flow is stable. The response is therefore turbulent, and involves Reynolds stresses which deform the mean-field such that the most unstable modes have lower growth rates.
|
Page generated in 0.1237 seconds