• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow Control Over a Circular Arc Airfoil by Periodic Blowing

Rullan, Jose M. 04 November 2004 (has links)
The flow over sharp-edged wings is almost always separated. The control of separated flows is possible and benefits can be achieved but only in a time average sense. A new design of an actuator was designed and tested which can achieve a wide range velocity of without frequency dependence, is free of oscillating components as well as free of secondary frequencies and therefore can be scaled up easily, unlike a traditional synthetic jet. The actuator can achieve a considerable amount of jet vectoring, thus aligning the disturbance with the leading edge shear layer. Results indicate that unsteady mini-jet actuation is an effective actuation device capable of increasing the lift in the stall region of the airfoil. Moreover, pressure measurements showed that two parameters could be altered to maximize the lift. The momentum coefficient needed a minimum value to exert influence and the actuating frequency need not be at exact the natural shedding frequency to improve the lift and can be operated at harmonics of the natural shedding frequency and obtain improvements. / Master of Science
2

Time-Resolved Analysis of Circulation Control over Supercritical Airfoil using Digital Particle Image Velocimetry (DPIV)

Hussain, Mian M. 07 January 2005 (has links)
Active pneumatic flow control methods as applied to aerospace applications have shown noteworthy improvements in lift compared to traditional means. The General Aviation Circulation Control (GACC) concept currently under investigation at NASA's Langley Research Center (LaRC) is an attempt at addressing some of the fundamental obstacles related to the successful development and implementation of such techniques. The primary focus of research in the field of high lift pneumatic devices is to investigate ways of obtaining significant improvements in the lift coefficient without resorting to moving surfaces. Though it has been demonstrated that the lift coefficient can be amplified in a variety of ways, the chosen method for the current work is via enhanced circulation stemming from a trailing edge Coanda jet. A secondary objective is to reduce the amount energy expenditure used in these pneumatic techniques by implementing time-variant flow. This paper describes experimental observations of the flow behavior at the trailing edge of a modified water tunnel based supercritical airfoil model that exploits both steady and pulsed Coanda driven circulation control. A total of 10 sets of data, excluding a baseline case of no Coanda jet, were sampled with five cases each for steady and pulsed flow, the latter at a reduced frequency, f+, of 1. Two cases of equal momentum coefficient but with varying forced frequencies were isolated for further study in an attempt to accurately compare the resultant flow dynamics of each method. All measurements were taken at a zero-lift angle of attack by means of a non-invasive time accurate flow visualization technique (DPIV). Vorticity behavior was investigated using Tecplot® and a MATLAB® program was developed to quantify the Strouhal Number of time-averaged velocity fluctuations moving aft of the Coanda surface for each case. / Master of Science

Page generated in 0.0744 seconds