• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 4
  • 3
  • 2
  • Tagged with
  • 30
  • 30
  • 13
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improvement of the characterisation method of the Johnson-Cook model

Jutras, Maxime. January 1900 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2008. / Titre de l'écran-titre (visionné le 9 mai 2008). Bibliogr.
2

CALIBRATION OF THE JOHNSON-COOK FAILURE PARAMETERS AS THE CHIP SEPARATION CRITERION IN THE MODELLING OF THE ORTHOGONAL METAL CUTTING PROCESS

Wang, Keyan January 2016 (has links)
The finite element analysis (FEA) is a numerical method widely used to predict the metal-cutting performance in both academic and industrial studies, avoiding the high expense and time consumption of experimental methods. The problem is how to calibrate reliable fracture-parameters as chip-separation criterion are implemented into FEA modelling. This thesis introduces a calibration method of the Johnson-Cook fracture parameters used in the orthogonal metal cutting modelling with a positive rake angle for AISI 1045 steel. These fracture parameters were obtained based on a set of quasi-static tensile tests, with smooth and pre-notched round bars at room temperature and elevated temperatures. The fracture parameters were validated by low- and high-strain rate simulations corresponding to tensile tests and orthogonal metal-cutting processes respectively in ABAQUS/Explicit. Compared to literature calibration methods, this method is simpler, less expensive but valid. / Thesis / Master of Applied Science (MASc)
3

Vývoj výkonných vrtacích nástrojů s využitím CAD/CAM a analýzy mechanismu tvorby třísky / ON THE DEVELOPMENT OF HIGH-PERFORMANCE DRILLING TOOLS BY MEANS OF CAD/CAM AND ANALYSIS OF CHIP FORMATION MECHANISM

Madaj, Martin January 2013 (has links)
This document deals with the development of drilling tools by means of CAD and CAE technologies. At first, a brief overview of various design procedures of 3D drill models is presented, possibilities of measurement of force and moment loading during drilling are mentioned, a chip formation mechanism is briefly described and then a list of commonly used explicit (mesh) finite element methods used for cutting simulations is presented. A meshless SPH method have been selected for this work. Although it is able to handle the large deformations easily, it has been used for cutting simulations very rarely and only an orthogonal cutting simulations related information can be found in scientific databases. It has been demonstrated on the orthogonal cutting simulation of A2024-T351 alloy that was also the starting point for SPH simulation of drilling. The following is a decription of the design, simulation and prototyping of new drilling tools - drills with three and two cutting edges and an internal chip channel. This document is focused in detail on the variant with two cutting edges for which SPH drilling simulation has also been performed. Some drawbacks related to more precise chip simulation demands have been revealed, especially a rapid increase in number of SPH elements followed with prolongation of a computational time. Information related to the design of the drilling head with two cutting edges were then used to create the patent application.
4

Vývoj výkonných vrtacích nástrojů s využitím CAD/CAM a analýzy mechanismu tvorby třísky / ON THE DEVELOPMENT OF HIGH-PERFORMANCE DRILLING TOOLS BY MEANS OF CAD/CAM AND ANALYSIS OF CHIP FORMATION MECHANISM

Madaj, Martin January 2013 (has links)
This document deals with the development of drilling tools by means of CAD and CAE technologies. At first, a brief overview of various design procedures of 3D drill models is presented, possibilities of measurement of force and moment loading during drilling are mentioned, a chip formation mechanism is briefly described and then a list of commonly used explicit (mesh) finite element methods used for cutting simulations is presented. A meshless SPH method have been selected for this work. Although it is able to handle the large deformations easily, it has been used for cutting simulations very rarely and only an orthogonal cutting simulations related information can be found in scientific databases. It has been demonstrated on the orthogonal cutting simulation of A2024-T351 alloy that was also the starting point for SPH simulation of drilling. The following is a decription of the design, simulation and prototyping of new drilling tools - drills with three and two cutting edges and an internal chip channel. This document is focused in detail on the variant with two cutting edges for which SPH drilling simulation has also been performed. Some drawbacks related to more precise chip simulation demands have been revealed, especially a rapid increase in number of SPH elements followed with prolongation of a computational time. Information related to the design of the drilling head with two cutting edges were then used to create the patent application.
5

The temperature dependent mechanical response of M250 maraging steel and its implications on wire arc additive manufacturing

Brinkley, Frank M, III 09 August 2022 (has links)
Wire-arc additive manufacturing (WAAM) is becoming increasingly common for large scale additive manufacturing (AM) applications because of its high deposition rate (2-3 kg/hr.). The rapid temperature changes and subsequent evolution of mechanical properties during AM can lead to large distortion and residual stresses. Finite element modeling of the AM process shows promise to minimize part distortion and residual stresses through improved path planning and process parameter optimization. However, accurate material properties of M250 before and after heat treatment are needed to properly characterize the property evolution from annealed to AM, to aged. Due to limited data on annealed M250, this research presents the mechanical response of solution annealed M250 maraging steel. Testing at temperatures up to 900 degrees Celsius and strain rates from quasi-static to 1 s-1 was performed to provide more representative mechanical properties for AM parts and provide a correlation between AM, aged, and annealed M250 maraging steel.
6

Improvement of the characterisation method of the Johnson-Cook model

Jutras, Maxime 13 April 2018 (has links)
La présente maîtrise est réalisée à la demande de Recherche et Développement pour la Défense Canada (RDDC) à Valcartier. Dans un contexte militaire, la capacité à caractériser indépendamment un matériau pour la simulation numérique est primordiale for trois raisons. Premièrement, les matériaux utilisés ne sont pas répandus comme ceux utilisés en aéronautique ou bien en construction automobile. Deuxièmement, les paramètres des matériaux spécifiques au domaine militaire sont rarement divulgués. Troisièmement, l’utilisation d’alliages secrètement développés prohibe la caractérisation par une seconde entité. Le présent projet à pour objectif the permettre au RDDC Valcartier d’effectuer de faon indépendante la détermination des paramètres du modèle Johnson-Cook [1] [2] de matériaux ductiles. Pour arriver à ce point, le modèle Johnson-Cook est présenté à partir de la théorie de la mécanique de l’endommagement des milieux continus (CDM). La méthode de caractérisation proposée par Johnson et Cook dans les références [1] et [2] est introduite. Après quoi, les techniques et moyens expérimentaux nécessaires sont également décrits. Le reste du mémoire se concentre sur les paramètres statiques du modèle (A, B, n, D1, D2, et D3), puisqu’ils sont prédominants dans la modélisation de la mécanique de l’endommagement comparativement aux autres paramètres [2], [16], et [27]. Quelques lacunes sont observées dans la méthode proposée par les auteurs du modèle. Finalement, une amélioration est proposée pour la partie statique de la méthode de caractérisation. La technique utilisée pour cette proposition utilise le système photogrammétrique ARAMIS afin de mesurer les déformations locales des échantillons sur tout la plage de temps et de faciliter la corrélation avec les simulations numériques effectuées avec le code explicit Ls-Dyna. / This Master of Science thesis is realized for the Defence Research and Development for Canada (DRDC) Valcartier. In a military context, the capacity to characterise independently the material for numerical simulation is important for three reasons. First, the material used are not widely used as aeronautical and car industries material. Secondly, the material parameters militarily relevant are rarely published. Thirdly, the used of secretly developed alloys could prevent from its characterisation by an external entity. The aim of the present study is to allow the DRDC Valcartier to self-characterize ductile metals for their simulation with the model Johnson-Cook, proposed in [1] and [2]. To get to this point, the Johnson-Cook model is presented starting from the CDM theory. The characterization method proposed by Johnson and Cook in [1] and [2] is introduced. Then, the experimental tests and equipments are described. After what, the work is focused on the static parameters (A, B, n, D1, D2, and D3), since those parameters are predominant compared with others in damage mechanics [2], [16], and [27]. Few lacks are pointed out of the suggested method. Finally, an improvement of the static part of the characterization method is proposed and tested. This added part includes the used of the photogrammetry system ARAMIS to monitor the experimental tests and simulation of those tests with LS-Dyna.
7

Méthode des champs virtuels pour la caractérisation du comportement dynamique de matériaux métalliques sous chargement purement inertiel / Virtual fields method for the dynamic behaviour of metallic materials under purely inertial loads

Bouda, Pascal 11 March 2019 (has links)
Les travaux de la thèse visent à mettre en place une méthodologie innovante de caractérisation du comportement viscoplastique des matériaux métalliques sous chargement purement inertiel. Sous chargements mécaniques extrêmes (e.g., crash, impact ou explosions), leur comportement mécanique présente en effet pour nombre d’entre eux une sensibilité à la vitesse de déformation. Des approches dites statiquement déterminées sont majoritairement utilisées pour caractériser leur comportement, mais elles requièrent de nombreux essais dont les conditions expérimentales sont souvent contraintes comme par exemple l’homogénéité de la vitesse de déformation qui doit être maintenue constante en temps par exemple. En revanche, des approches dites statiquement indéterminées permettent l’exploitation d’essais mécaniques avec peu d’hypothèses (voire sans) sur les conditions d’essai. Une méthodologie fondée sur un essai d’impact purement intertiel est mise en oeuvre ici pour identifier le comportement viscoplastique de ces matériaux. Avec la Méthode des Champs Virtuels, la méthodologie permet l’identification des paramètres matériaux en exploitant uniquement la mesure des champs de déformation et d’accélération, potentiellement hétérogènes en temps et en espace. Ainsi, celui-ci peut être caractérisé sur une large gamme de déformations et de vitesses de déformation plastiques en procédant à un nombre limité d’expériences. La méthode repose sur le développement d’un simulateur d’images avancé permettant de définir au préalable l’ensemble du dispositif expérimental (géométrie de l’éprouvette et conditions expérimentales). Optimisées numériquement pour prescrire les paramètres d’essai critiques, les réalisations expérimentales menées sur un alliage de Titane utilisé dans l’industrie aéronautique ont permis d’identifier les paramètres d’un modèle de Johnson-Cook sur un spectre de déformations et de vitesses de déformation plastiques pré-déterminé. Les incertitudes de la mesure sont également intégrées et analysées dans ce travail. / This thesis aims at developing an innovative methodology for viscoplastic material behaviour characterization of metallic materials under purely inertial loads. Indeed, their mechanical behaviour under extreme conditions (e.g., crash, impact or explosions) is often rate-dependant. Statically determinate approaches are mainly used to characterize their behaviour. However, they require numerous tests for which testing conditions are strongly constrained, such as the strain rate which has to remain constant in time and space for instance. By contrast, statically undeterminate approaches enable test processing with a few (or without) hypotheses on experimental conditions. In this work, the Image-Based Inertial Impact test methodology has been extended to characterize the viscoplastic behaviour of metallic materials. Owing to the Virtual Fields Method, it enables the identification of constitutive material parameters with the sole knowledge of strain and acceleration fields (possibly heterogeneous in time and space). Therefore, constitutive models can be characterized over a wide range of plastic strain and strain rate, while the number of tests is limited. Tests design notably relies on the development of a synthetic images generator to determine the experimental setup (e.g., specimen geometry or testing conditions). Finally, experiments are carried out with optimized test configurations to identify Johnson-Cook parameters over a predicted range of plastic strain and strain rate for a titanium alloy widely used in aerospace industry. Identification uncertainties are also quantified and analysed in this work.
8

Simulation of hard projectile impact on friction stir welded plate

Wang, Wei 12 1900 (has links)
A numerical simulation is conducted using LS-DYNA to simulate hard projectile impact on a friction stir welded (FSW) plate. As the hard projectile has a wide range of velocity, mass and shape, when referring to AMC 25.963(e) of CS-25, ―Fuel Tank Access Cover‖, the hard projectile can be defined as 9.5 mm cubic-shaped steel engine debris with an initial impact velocity of 213.4 m/s (700 ft/s). This preliminary study was to evaluate whether the fuel tank adjacent skin panel joined by FSW would pass the regulation. First, the geometry and Johnson-Cook material model of the FSW joint were developed based on previous experimental research and validated by comparison with the tensile test on the FSW specimen. Then the impact on an Aluminium Alloy 2024 (AA 2024) plate without FSW was modelled. The minimum thickness of a homogeneous AA 2024 plate which could withstand the impact from engine debris is 3 mm. Finally the impact on 3 mm thick AA 2024 FSW plate was simulated. The welding induced residual stress was implemented in the plate model. The impact centre was changed from the nugget zone to the thermo-mechanically affected zone, heat-affected zone and base material zone of the FSW joint. Penetration only occurred in the model with impact centre on the nugget zone. Additional simulation indicated that increasing the thickness of the FSW plate to 3.6 mm could prevent the penetration.
9

Finite element modeling of the behavior of armor materials under high strain rates and large strains

Polyzois, Ian, Polyzois, Ioannis 09 April 2010 (has links)
The objective of this research project was to simulate the behavior of armor metals at high strain rates and large strains, using the Johnson-Cook visco-plastic model, while incorporating the formation of adiabatic shear bands. The model was then to be applied to three armor metals, namely maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083-H131; supplied by the Canadian Department of National Defense and tested in compression at the University of Manitoba. The Johnson-Cook model can accurately simulate the behavior of BCC metal (steels) up to a point of thermal instability. Conditions for complete shear failure in the model match closely to conditions at which adiabatic shear bands formed in specimens tested experimentally. The Johnson-Cook model is not quite valid for FCC metals, such as aluminum, where strain rate and temperature effects are dependent on the strain while in the Johnson-Cook model, these parameters are separable.
10

Finite element modeling of the behavior of armor materials under high strain rates and large strains

Polyzois, Ian 09 April 2010 (has links)
The objective of this research project was to simulate the behavior of armor metals at high strain rates and large strains, using the Johnson-Cook visco-plastic model, while incorporating the formation of adiabatic shear bands. The model was then to be applied to three armor metals, namely maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083-H131; supplied by the Canadian Department of National Defense and tested in compression at the University of Manitoba. The Johnson-Cook model can accurately simulate the behavior of BCC metal (steels) up to a point of thermal instability. Conditions for complete shear failure in the model match closely to conditions at which adiabatic shear bands formed in specimens tested experimentally. The Johnson-Cook model is not quite valid for FCC metals, such as aluminum, where strain rate and temperature effects are dependent on the strain while in the Johnson-Cook model, these parameters are separable.

Page generated in 0.0406 seconds