• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling degradation in adhesive joints subjected to fluctuating service conditions

Mubashar, Aamir January 2010 (has links)
Adhesive joining is an attractive alternative to conventional joining methods, such as welding and mechanical fastening. The benefits of adhesive bonding include: the ability to form lightweight, high stiffness structures; joining of different types of materials; better fatigue performance, and reduction in the stress concentrations or the effects of the heat associated with welding. However, concerns about the durability of adhesive joints still hinder their widespread use in structural applications. Moisture has been identified as one of the major factors affecting joint durability. This is especially important in applications where joints are exposed to varying moisture conditions throughout their useful life. The aim of this research is to develop models to predict degradation in adhesive joints under varying moisture conditions. This was achieved by a combination of experimental and numerical methods. Experiments were carried out to characterise the moisture uptake and mechanical properties of the single part epoxide adhesive, FM73-M. Single lap joints were manufactured from aluminium alloy 2024 in heat treated (T3) and non heat treated (O) states using the FM73-M, BR127 adhesive-primer system. Tensile testing of the single lap joints was carried out after the joints had been exposed to hot-wet conditioning environments. Models were developed for predicting moisture concentration in the adhesive under cyclic moisture absorption and desorption conditions. A finite element based methodology incorporating moisture history was developed to predict the cyclic moisture concentration. In the next step, a novel finite element based methodology, which was based on moisture history effects, was developed to determine stresses in bonded joints after curing, conditioning and tensile testing. In the final step, a moisture history dependent cohesive zone element based damage and failure criterion was introduced to predict damage initiation, crack growth and failure under variable moisture and temperature conditions. The methodology proposed in this work and its implementation by finite element method provides a systematic approach for determining the degradation in adhesive joints under varying environmental conditions and accomplishes the aim of this research.
2

Topographic and Surface Chemical Aspects of the Adhesion of Structural Epoxy Resins to Phosphorus Oxo Acid Treated Aluminum Adherends

Nitowski, Gary Alan 11 May 1998 (has links)
Structural adhesive bonding offers several advantages over other types of joining. These include improved stress distribution and increased design flexibility. Adhesive bonding is important in aerospace, automotive, and packaging applications. However, the full potential of the technology has not been exploited because the understanding of the basic mechanisms of adhesion and adhesion failure is incomplete. This investigation elucidates the chemical and mechanical mechanisms responsible for durable adhesion of epoxy resins to phosphorus oxo acid treated aluminum alloys. By systematically altering the adherend surface chemistry, surface topography, and adhesive formulation, combined with accelerated testing, the chemical and mechanical factors that influence the properties of adhesively bonded aluminum are isolated and assessed. It is postulated that a combination of two factors determines the strength and environmental durability of epoxy-bonded aluminum. One is the formation of hydrolytically stable, primary bonds between the adhesive and the adherend, and the second is the hydrolytic stability of the surface oxide, which is always present on the surface of aluminum and aluminum alloys. These conditions can best be met by chemical pretreatment of the oxide surface, which renders the oxide insoluble and creates, at the same time, functional surface sites. These sites can form chemical bonds with reactive components of the adhesive. Morphological and mechanical alteration of the metal surface oxide through hydroxide formation requires liquid water. Liquid water can only form by capillary condensation in interfacial gaps from molecularly diffusing water. A hydrolytically stable oxide will prevent bond failure due to mechanical weakening of the substrate surface, while a high density of hydrolytically stable surface bonding sites will minimize the occurrence of capillary gaps at the interface, thus decreasing the formation of liquid water. It is shown that highly chemically active, although not inherently stable, oxide surfaces can provide environmentally stable adhesive bonds. Conversely, certain highly stable oxide surfaces with few chemically active sites provide no environmental stability to adhesive joints, regardless of the topography of the surface. / Ph. D.

Page generated in 0.0447 seconds