Spelling suggestions: "subject:"point hyperexcitability""
11 |
Examining Differences in Symptoms in Individuals with Hypermobile Ehlers-Danlos Syndome in Relation to PubertyHeraty, Katelyn M. 17 October 2014 (has links)
No description available.
|
12 |
Pain and Fatigue Associated with Generalized Joint Hypermobility in Gaucher DiseaseMahan, Farrah R., B.A. 21 September 2018 (has links)
No description available.
|
13 |
Joint Hypermobility Syndrome: A Common Clinical Disorder Associated with Migraine Headache in WomenBendik, Elise 30 September 2010 (has links)
No description available.
|
14 |
Genetics and Biomarkers of Osteoarthritis and Joint HypermobilityChen, Hsiang-Cheng January 2009 (has links)
<p>Osteoarthritis (OA) is the most common joint disorder causing chronic disability in the world population. By the year 2030, an estimated one fifth of this population will be affected by OA. Although OA is regarded as a multi-factorial disorder with both environmental and genetic components, the exact pathogenesis remains unknown. </p><p> In this study, we hypothesize that biomarkers associated with OA can be used as quantitative traits of OA, and provide enough power to identify new genes or replicate known gene associations for OA. We established an extensive family called the CARRIAGE (CARolinas Region Interaction of Aging, Genes and Environment) family. Then, we measured and analyzed seven OA-related biomarkers (HA, COMP, PIIANP, CPII, C2C, hs-CRP and GSP) in this extensive family to evaluate their association with OA clinical phenotypes. These findings suggest that OA biomarkers can reflect hand OA in this large multigenerational family. Therefore, we performed nonparametric variance components analysis to evaluate heritability for quantitative traits for those biomarkers. Finally, based upon OA biomarkers with high heritability, we performed a genome-wide linkage scan. Our results provide the first evidence of genetic susceptibility loci identified by OA-related biomarkers, indicating several genetic loci potentially contributing to the genetic diversity of OA. </p><p> Meanwhile, we identified joint hypermobility as a factor which reduces OA risk and has an inverse association with serum COMP levels in this family. The relationship between lower serum COMP and OA have been further validated in another Caucasian GOGO (Genetics of Generalized Osteoarthritis) population. Therefore, we further hypothesize that joint hypermobility, having the characteristic of a decreased OA risk, can serve as a quantitative trait for identifying protective loci for OA. Then, we performed nonparametric variance components analysis to evaluate the heritability of joint hypermobility. The result also shows joint hypermobility has substantial heritable components in this family. Lastly, based on the same genome-wide linkage scan, we identify genetic susceptibility loci for joint hypermobility. </p><p> In conclusion, our work provides the first linkage study to identify genetic loci associated with OA using biological markers. Furthermore, we have also shown genetic susceptibility loci for joint hypermobility, possibly implying protective loci for OA.</p> / Dissertation
|
15 |
Výskyt konstituční hypermobility u pacientů s úzkostnou poruchou / Incidence of Joint Hypermobility Syndrome in Anxienty PatientsZasadilová, Marie January 2019 (has links)
Author: Bc. Marie Zasadilová Title: Incidence of Joint Hypermobility Syndrome in Anxienty Patients Objectives: The aim of this study is to find out what ist he incidence of Joint hypermobility syndrome in the research group of probands with anxiety disorder, on the base of collected theoretical knowledge. Methods: The group of patients with diagnosis of anxiety disorder was examined on presence of joint hypermobility syndrome. For the examination was used standardised test scale Beighton score. The data was statistically processed, prevalence of hypermobility in the research group was compared with prevalece in common population. Results: Prevalence of joint hypermobility syndrome in the research group was 44,88%, that is about 31,88% more, than in common population. Hypermobility was found in 65% of female part oft he research group, that is about 25% more, than in common female population. Prevalence in male part of research group was 16,67%, about 5,17% more than in common male population. The hypotesis, that prevalence of joint hypermobility syndrome will be hihger in the research group than in common population, was affirmed. Average result of Beighton score in group of probands was 4,38 points, the most common result was 2 points. Skewness and krtosis of the histogram curve corresponds with...
|
16 |
The neuro-muscular and musculo-skeletal characterization of children with joint hypermobilityNetscher, Heather Gayle January 2009 (has links)
In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b).
Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies.
The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension.
The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width.
Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait.
The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.
|
Page generated in 0.0911 seconds