Spelling suggestions: "subject:"point segregation analysis""
1 |
Genetic Analysis of Marsh Spot Resistance in Cranberry Common Bean (Phaseolus vulgaris L.)Jia, Bosen 22 August 2022 (has links)
Cranberry common bean (Phaseolus vulgaris L.) is planted worldwide and consumed as a critical food source of human protein, fibre, carbohydrates, and minerals. Marsh spot (MS) is a physiogenic disorder which severely impacts seed quality in common beans. Previous studies indicate that MS involves a nutritional disorder caused by Mn deficiency. However, the inheritance and genetic mechanism of MS resistance are still not fully understood.
To investigate the genetics of MS resistance, a population of 138 recombinant inbred lines (RILs) was developed from a bi-parental cross between a susceptible cultivar Messina and a resistant cultivar Cran09. The population and its two parents were evaluated for MS resistance during five consecutive years from 2015 to 2019 in both sandy and heavy clay soils in Morden, Manitoba, Canada. The severities of MS were rated and subsequently converted to MS resistance index (MSRI) and MS incidence (MSI). Statistical analyses indicated that MSI and MSRI were highly correlated (r = 0.96-0.99) and had high broad-sense heritability (H²) of 86.5% and 83.2%, respectively. Joint segregation analysis (JSA) of 18 phenotypic datasets from five years and two soil types showed that MS resistance was controlled by four major genes with genetic interactions - one of which may suppress the additive effect of the other three genes.
To identify the quantitative trait loci (QTL) and the candidate genes associated with the MS resistance, the 138 RILs and the two parents were sequenced using genotyping by sequencing approach. A total of 52,676 SNPs were detected. After further filtering with a threshold of minor allele frequency > 0.01 and call rate > 20%, 2,061 SNPs were retained and then imputed for genetic map construction and QTL mapping. A genetic map consisting of 2,058 SNP markers on 11 linkage groups or chromosomes was constructed, which covered 1,004 recombination blocks with a total length of 6,449 cM and an average block of 6.42 cM. Three linkage map-based QTL-mapping models ICIM-ADD, ICIM-EPI, and GCIM and one genome-wide association study (GWAS) model RTM-GWAS for 18 phenotypic datasets from different years and soil types were used for identification of QTL. A total of 36 QTL, including 21 of additive and 15 of epistatic effects, were identified. Functional gene annotation analysis revealed 151 Mn-related candidate genes across the common bean reference genome and 17 of them harbored the six QTL discovered in this study.
In conclusion, MS resistance in common bean is a highly heritable trait and controlled by several major and minor genes. The results of JSA and QTL mapping advance the current understanding of the genetic mechanisms of MS resistance in cranberry common bean, and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.
|
2 |
Genetic analysis of earliness traits in chickpea (<i>Cicer arietinum</i> L.)Kabeta, Yadeta Anbessa 31 July 2007
The latter part of the reproductive growth phase in chickpea (<i>Cicer arietinum</i> L.) often coincides with declining temperature and wet conditions in western Canada, in sharp contrast to many other growing environments. This exacerbates the indeterminate nature of the crop, leading to excessive canopy development, and subsequently resulting in delayed maturity. The objectives of this study were to: i) determine the genetic relationships of short internode, double podding and early flowering traits with earliness of crop maturity; ii) determine the genetic control of major earliness traits in chickpea; iii) assess the patterns of post-flowering dry matter accumulation and partitioning to reproductive parts as related to earliness. <p>The results showed that double podding significantly reduced the number of days taken to maturity, under the conditions where this trait was sufficiently expressed. The best double podding genotypes, i.e. those with 1535% of the podded nodes bearing double pods, were about one week earlier than their single podding counterparts and standard checks. A physiological study revealed that the double podding parental genotype 272-2 partitioned a relatively greater proportion (about 58%) of the total dry matter to pods compared to 4254% in the single podding genotypes. Double podding increased the total number of pods set, and thus the increased demand for assimilates may have precluded further production of stems and leaves, resulting in an earlier transition of reproductive growth to physiological maturity. Days to flowering was positively associated with days to maturity, and partial path analysis revealed that days to flowering contributed to days to maturity indirectly via days to first pod maturity. Days to flowering explained 32% of the variation in days to first pod maturity. However, the short internode trait had an undesirable effect, in that all the short internode segregants were too late to mature. <p>Genetic studies revealed that days to flowering was determined by two major genes plus polygenes in chickpea in the short-season temperate environment of western Canada. The two major genes control over 65% of the phenotypic variation. Also, the additive component of genetic variance was significant for days to first podding, days to first pod maturity, reproductive period, and days to maturity; which is desirable for development of superior inbred cultivars of chickpea. These key phenological traits are interrelated but could be manipulated separately in the breeding process. Additional gain in earliness of crop maturity may be achieved through combined selection for these traits.
|
3 |
Genetic analysis of earliness traits in chickpea (<i>Cicer arietinum</i> L.)Kabeta, Yadeta Anbessa 31 July 2007 (has links)
The latter part of the reproductive growth phase in chickpea (<i>Cicer arietinum</i> L.) often coincides with declining temperature and wet conditions in western Canada, in sharp contrast to many other growing environments. This exacerbates the indeterminate nature of the crop, leading to excessive canopy development, and subsequently resulting in delayed maturity. The objectives of this study were to: i) determine the genetic relationships of short internode, double podding and early flowering traits with earliness of crop maturity; ii) determine the genetic control of major earliness traits in chickpea; iii) assess the patterns of post-flowering dry matter accumulation and partitioning to reproductive parts as related to earliness. <p>The results showed that double podding significantly reduced the number of days taken to maturity, under the conditions where this trait was sufficiently expressed. The best double podding genotypes, i.e. those with 1535% of the podded nodes bearing double pods, were about one week earlier than their single podding counterparts and standard checks. A physiological study revealed that the double podding parental genotype 272-2 partitioned a relatively greater proportion (about 58%) of the total dry matter to pods compared to 4254% in the single podding genotypes. Double podding increased the total number of pods set, and thus the increased demand for assimilates may have precluded further production of stems and leaves, resulting in an earlier transition of reproductive growth to physiological maturity. Days to flowering was positively associated with days to maturity, and partial path analysis revealed that days to flowering contributed to days to maturity indirectly via days to first pod maturity. Days to flowering explained 32% of the variation in days to first pod maturity. However, the short internode trait had an undesirable effect, in that all the short internode segregants were too late to mature. <p>Genetic studies revealed that days to flowering was determined by two major genes plus polygenes in chickpea in the short-season temperate environment of western Canada. The two major genes control over 65% of the phenotypic variation. Also, the additive component of genetic variance was significant for days to first podding, days to first pod maturity, reproductive period, and days to maturity; which is desirable for development of superior inbred cultivars of chickpea. These key phenological traits are interrelated but could be manipulated separately in the breeding process. Additional gain in earliness of crop maturity may be achieved through combined selection for these traits.
|
Page generated in 0.0971 seconds