• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An infinite family of anticommutative algebras with a cubic form

Schoenecker, Kevin J. 14 September 2007 (has links)
No description available.
2

The geometry of Jordan and Lie structures /

Bertram, Wolfgang. January 2000 (has links)
Techn. Univ., Habil.-Schr.--Clausthal, 2000. / Literaturverz. S. [256] - 262.
3

Compatible Lie and Jordan algebras and applications to structured matrices and pencils /

Mehl, Christian, January 1900 (has links)
Diss.--Mathematik--Chemnitz--Technische Universität, 1998. / Bibliogr. p. 103-105.
4

Schur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan Algebras

Ammar, Gregory, Mehl, Christian, Mehrmann, Volker 09 September 2005 (has links) (PDF)
We describe canonical forms for elements of a classical Lie group of matrices under similarity transformations in the group. Matrices in the associated Lie algebra and Jordan algebra of matrices inherit related forms under these similarity transformations. In general, one cannot achieve diagonal or Schur form, but the form that can be achieved displays the eigenvalues of the matrix. We also discuss matrices in intersections of these classes and their Schur-like forms. Such multistructered matrices arise in applications from quantum physics and quantum chemistry.
5

Schur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan Algebras

Ammar, Gregory, Mehl, Christian, Mehrmann, Volker 09 September 2005 (has links)
We describe canonical forms for elements of a classical Lie group of matrices under similarity transformations in the group. Matrices in the associated Lie algebra and Jordan algebra of matrices inherit related forms under these similarity transformations. In general, one cannot achieve diagonal or Schur form, but the form that can be achieved displays the eigenvalues of the matrix. We also discuss matrices in intersections of these classes and their Schur-like forms. Such multistructered matrices arise in applications from quantum physics and quantum chemistry.

Page generated in 0.0457 seconds