• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enumerating k-cliques in a large network using Apache Spark

Dheekonda, Raja Sekhar Rao January 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Network analysis is an important research task which explains the relationships among various entities in a given domain. Most of the existing approaches of network analysis compute global properties of a network, such as transitivity, diameter, and all-pair shortest paths. They also study various non-random properties of a network, such as graph densifi cation with shrinking diameter, small diameter, and scale-freeness. Such approaches enable us to understand real-life networks with global properties. However, the discovery of the local topological building blocks within a network is an important task, and examples include clique enumeration, graphlet counting, and motif counting. In this paper, my focus is to fi nd an efficient solution of k-clique enumeration problem. A clique is a small, connected, and complete induced subgraph over a large network. However, enumerating cliques using sequential technologies is very time-consuming. Another promising direction that is being adopted is a solution that runs on distributed clusters of machines using the Hadoop mapreduce framework. However, the solution suffers from a general limitation of the framework, as Hadoop's mapreduce performs substantial amounts of reading and writing to disk. Thus, the running times of Hadoop-based approaches suffer enormously. To avoid these problems, we propose an e cient, scalable, and distributed solution, kc-spark , for enumerating cliques in real-life networks using the Apache Spark in-memory cluster computing framework. Experiment results show that kc-spark can enumerate k-cliques from very large real-life networks, whereas a single commodity machine cannot produce the same desired result in a feasible amount of time. We also compared kc-spark with Hadoop mapreduce solutions and found the algorithm to be 80-100 percent faster in terms of running times. On the other hand, we compared with the triangle enumeration with Hadoop mapreduce and results shown that kc-spark is 8-10 times faster than mapreduce implementation with the same cluster setup. Furthermore, the overall performance of kc-spark is improved by using Spark's inbuilt caching and broadcast transformations.
2

Finding homogeneous collections of dense subgraphs using constraint-based data mining approaches / Découverte de collections homogènes de sous-graphes denses par des méthodes de fouille de données sous contraintes

Mougel, Pierre-Nicolas 14 September 2012 (has links)
Ce travail de thèse concerne la fouille de données sur des graphes attribués. Il s'agit de graphes dans lesquels des propriétés, encodées sous forme d'attributs, sont associées à chaque sommet. Notre objectif est la découverte, dans ce type de données, de sous-graphes organisés en plusieurs groupes de sommets fortement connectés et homogènes au regard des attributs. Plus précisément, nous définissons l'extraction sous contraintes d'ensembles de sous-graphes densément connectés et tels que les sommets partagent suffisamment d'attributs. Pour cela nous proposons deux familles de motifs originales ainsi que les algorithmes justes et complets permettant leur extraction efficace sous contraintes. La première famille, nommée Ensembles Maximaux de Cliques Homogènes, correspond à des motifs satisfaisant des contraintes concernant le nombre de sous-graphes denses, la taille de ces sous-graphes et le nombre d'attributs partagés. La seconde famille, nommée Collections Homogènes de k-cliques Percolées emploie quant à elle une notion de densité plus relaxée permettant d'adapter la méthode aux données avec des valeurs manquantes. Ces deux méthodes sont appliquées à l'analyse de deux types de réseaux, les réseaux de coopérations entre chercheurs et les réseaux d'interactions de protéines. Les motifs obtenus mettent en évidence des structures utiles dans un processus de prise de décision. Ainsi, dans un réseau de coopérations entre chercheurs, l'analyse de ces structures peut aider à la mise en place de collaborations scientifiques entre des groupes travaillant sur un même domaine. Dans le contexte d'un graphe de protéines, les structures exhibées permettent d'étudier les relations entre des modules de protéines intervenant dans des situations biologiques similaires. L'étude des performances en fonction de différentes caractéristiques de graphes attribués réels et synthétiques montre que les approches proposées sont utilisables sur de grands jeux de données. / The work presented in this thesis deals with data mining approaches for the analysis of attributed graphs. An attributed graph is a graph where properties, encoded by means of attributes, are associated to each vertex. In such data, our objective is the discovery of subgraphs formed by several dense groups of vertices that are homogeneous with respect to the attributes. More precisely, we define the constraint-based extraction of collections of subgraphs densely connected and such that the vertices share enough attributes. To this aim, we propose two new classes of patterns along with sound and complete algorithms to compute them efficiently using constraint-based approaches. The first family of patterns, named Maximal Homogeneous Clique Set (MHCS), contains patterns satisfying constraints on the number of dense subgraphs, on the size of these subgraphs, and on the number of shared attributes. The second class of patterns, named Collection of Homogeneous k-clique Percolated components (CoHoP), is based on a relaxed notion of density in order to handle missing values. Both approaches are used for the analysis of scientific collaboration networks and protein-protein interaction networks. The extracted patterns exhibit structures useful in a decision support process. Indeed, in a scientific collaboration network, the analysis of such structures might give hints to propose new collaborations between researchers working on the same subjects. In a protein-protein interaction network, the analysis of the extracted patterns can be used to study the relationships between modules of proteins involved in similar biological situations. The analysis of the performances, on real and synthetic data, with respect to different attributed graph characteristics, shows that the proposed approaches scale well for large datasets.
3

Identificação de comunidades e exploração visual em redes sociais : rede do comércio internacional europeu

Moura, Luis Matias Nunes de Pina January 2012 (has links)
Tese de mestrado. Mestrado Integrado em Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 2012
4

Découverte de collections homogènes de sous-graphes denses par des méthodes de fouille de données sous contraintes

Mougel, Pierre-Nicolas 14 September 2012 (has links) (PDF)
Ce travail de thèse concerne la fouille de données sur des graphes attribués. Il s'agit de graphes dans lesquels des propriétés, encodées sous forme d'attributs, sont associées à chaque sommet. Notre objectif est la découverte, dans ce type de données, de sous-graphes organisés en plusieurs groupes de sommets fortement connectés et homogènes au regard des attributs. Plus précisément, nous définissons l'extraction sous contraintes d'ensembles de sous-graphes densément connectés et tels que les sommets partagent suffisamment d'attributs. Pour cela nous proposons deux familles de motifs originales ainsi que les algorithmes justes et complets permettant leur extraction efficace sous contraintes. La première famille, nommée Ensembles Maximaux de Cliques Homogènes, correspond à des motifs satisfaisant des contraintes concernant le nombre de sous-graphes denses, la taille de ces sous-graphes et le nombre d'attributs partagés. La seconde famille, nommée Collections Homogènes de k-cliques Percolées emploie quant à elle une notion de densité plus relaxée permettant d'adapter la méthode aux données avec des valeurs manquantes. Ces deux méthodes sont appliquées à l'analyse de deux types de réseaux, les réseaux de coopérations entre chercheurs et les réseaux d'interactions de protéines. Les motifs obtenus mettent en évidence des structures utiles dans un processus de prise de décision. Ainsi, dans un réseau de coopérations entre chercheurs, l'analyse de ces structures peut aider à la mise en place de collaborations scientifiques entre des groupes travaillant sur un même domaine. Dans le contexte d'un graphe de protéines, les structures exhibées permettent d'étudier les relations entre des modules de protéines intervenant dans des situations biologiques similaires. L'étude des performances en fonction de différentes caractéristiques de graphes attribués réels et synthétiques montre que les approches proposées sont utilisables sur de grands jeux de données.

Page generated in 0.0335 seconds