1 |
Tertiary Creep Damage Modeling Of A Transversely Isotropic Ni-based SuperalloyStewart, Calvin 01 January 2009 (has links)
Anisotropic tertiary creep damage formulations have become an increasingly important prediction technique for high temperature components due to drives in the gas turbine industry for increased combustion chamber exit pressures, temperature, and the use of anisotropic materials such as metal matrix composites and directionally-solidified (DS) Ni-base superalloys. Typically, isotropic creep damage formulations are implemented for simple cases involving a uniaxial state of stress; however, these formulations can be further developed for multiaxial states of stress where materials are found to exhibit induced anisotropy. In addition, anisotropic materials necessitate a fully-developed creep strain tensor. This thesis describes the development of a new anisotropic tertiary creep damage formulation implemented in a general-purpose finite element analysis (FEA) software. Creep deformation and rupture tests are conducted on L, T, and 45°-oriented specimen of subject alloy DS GTD-111. Using the Kachanov-Rabotnov isotropic creep damage formulation and the optimization software uSHARP, the damage constants associated with the creep tests are determined. The damage constants, secondary creep, and derived Hill Constants are applied directly into the improved formulation. Comparison between the isotropic and improved anisotropic creep damage formulations demonstrates modeling accuracy. An examination of the off-axis creep strain terms using the improved formulation is conducted. Integration of the isotropic creep damage formulation provides time to failure predictions which are compared with rupture tests. Integration of the improved anisotropic creep damage produces time to failure predictions at intermediate orientations and any state of stress. A parametric study examining various states of stress, and materials orientations is performed to verify the flexibility of the improved formulation. A parametric exercise of the time to failure predictions for various levels of uniaxial stress is conducted.
|
2 |
The TLC Method for Modeling Creep Deformation and RuptureMay, David 01 May 2014 (has links)
This thesis describes a novel new method, termed the Tangent-Line-Chord (TLC) method, that can be used to more efficiently model creep deformation dominated by the tertiary regime. Creep deformation is a widespread mechanical mode of failure found in high-stress and temperature mechanical systems. To accurately simulate creep and its effect on structures, researchers utilize finite element analysis (FEA). General purpose FEA packages require extensive amounts of time and computer resources to simulate creep softening in components because of the large deformation rates that continuously evolve. The goal of this research is to employ multi-regime creep models, such as the Kachanov-Rabotnov model, to determine a set of equations that will allow creep to be simulated using as few iterations as possible. The key outcome is the freeing up of computational resources and the saving of time. Because both the number of equations and the value of material constants within the model change depending on the approach used, programming software will be utilized to automate this analytical process. The materials being considered in this research are mainly generic Ni-based superalloys, as they exhibit creep responses that are dominated by secondary and tertiary creep.
|
Page generated in 0.0377 seconds