• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Face presentation attack detection using texture analysis

Boulkenafet, Z. (Zinelabidine) 15 May 2018 (has links)
Abstract In the last decades, face recognition systems have evolved a lot in terms of performance. As a result, this technology is now considered as mature and is applied in many real world applications from border control to financial transactions and computer security. Yet, many studies show that these systems suffer from vulnerabilities to spoofing attacks, a weakness that may limit their usage in many cases. A face spoofing attack or presentation attack occurs when someone tries to masquerade as someone else by presenting a fake face in front of the face recognition camera. To protect the recognition systems against attacks of this kind, many face anti-spoofing methods have been proposed. These methods have shown good performances on the existing face anti-spoofing databases. However, their performances degrade drastically under real world variations (e.g., illumination and camera device variations). In this thesis, we concentrate on improving the generalization capabilities of the face anti-spoofing methods with a particular focus on the texture based techniques. In contrast to most existing texture based methods aiming at extracting texture features from gray-scale images, we propose a joint color-texture analysis. First, the face images are converted into different color spaces. Then, the feature histograms computed over each image band are concatenated and used for discriminating between real and fake face images. Our experiments conducted on three color spaces: RGB, HSV and YCbCr show that extracting the texture information from separated luminance chrominance color spaces (HSV and YCbCr) yields to better performances compared to gray-scale and RGB image representations. Moreover, to deal with the problem of illumination and image-resolution variations, we propose to extract this texture information from different scale images. In addition to representing the face images in different scales, the multi-scale filtering methods also act as pre-processing against factors such as noise and illumination. Although our obtained results are better than the state of the art, they are still far from the requirements of real world applications. Thus, to help in the development of robust face anti-spoofing methods, we collected a new challenging face anti-spoofing database using six camera devices in three different illumination and environmental conditions. Furthermore, we have organized a competition on the collected database where fourteen face anti-spoofing methods have been assessed and compared. / Tiivistelmä Kasvontunnistusjärjestelmien suorituskyky on parantunut huomattavasti viime vuosina. Tästä syystä tätä teknologiaa pidetään nykyisin riittävän kypsänä ja käytetään jo useissa käytännön sovelluksissa kuten rajatarkastuksissa, rahansiirroissa ja tietoturvasovelluksissa. Monissa tutkimuksissa on kuitenkin havaittu, että nämä järjestelmät ovat myös haavoittuvia huijausyrityksille, joissa joku yrittää esiintyä jonakin toisena henkilönä esittämällä kameralle jäljennöksen kohdehenkilön kasvoista. Tämä haavoittuvuus rajoittaa kasvontunnistuksen laajempaa käyttöä monissa sovelluksissa. Tunnistusjärjestelmien turvaamiseksi on kehitetty lukuisia menetelmiä tällaisten hyökkäysten torjumiseksi. Nämä menetelmät ovat toimineet hyvin tätä tarkoitusta varten kehitetyillä kasvotietokannoilla, mutta niiden suorituskyky huononee dramaattisesti todellisissa käytännön olosuhteissa, esim. valaistuksen ja käytetyn kuvantamistekniikan variaatioista johtuen. Tässä työssä yritämme parantaa kasvontunnistuksen huijauksen estomenetelmien yleistämiskykyä keskittyen erityisesti tekstuuripohjaisiin menetelmiin. Toisin kuin useimmat olemassa olevat tekstuuripohjaiset menetelmät, joissa tekstuuripiirteitä irrotetaan harmaasävykuvista, ehdotamme väritekstuurianalyysiin pohjautuvaa ratkaisua. Ensin kasvokuvat muutetaan erilaisiin väriavaruuksiin. Sen jälkeen kuvan jokaiselta kanavalta erikseen lasketut piirrehistogrammit yhdistetään ja käytetään erottamaan aidot ja väärät kasvokuvat toisistaan. Kolmeen eri väriavaruuteen, RGB, HSV ja YCbCr, perustuvat testimme osoittavat, että tekstuuri-informaation irrottaminen HSV- ja YCbCr-väriavaruuksien erillisistä luminanssi- ja krominanssikuvista parantaa suorituskykyä kuvien harmaasävy- ja RGB-esitystapoihin verrattuna. Valaistuksen ja kuvaresoluution variaation takia ehdotamme myös tämän tekstuuri-informaation irrottamista eri tavoin skaalatuista kuvista. Sen lisäksi, että itse kasvot esitetään eri skaaloissa, useaan skaalaan perustuvat suodatusmenetelmät toimivat myös esikäsittelynä sellaisia suorituskykyä heikentäviä tekijöitä vastaan kuten kohina ja valaistus. Vaikka tässä tutkimuksessa saavutetut tulokset ovat parempia kuin uusinta tekniikkaa edustavat tulokset, ne ovat kuitenkin vielä riittämättömiä reaalimaailman sovelluksissa tarvittavaan suorituskykyyn. Sen takia edistääksemme uusien robustien kasvontunnistuksen huijaamisen ilmaisumenetelmien kehittämistä kokosimme uuden, haasteellisen huijauksenestotietokannan käyttäen kuutta kameraa kolmessa erilaisessa valaistus- ja ympäristöolosuhteessa. Järjestimme keräämällämme tietokannalla myös kansainvälisen kilpailun, jossa arvioitiin ja verrattiin neljäätoista kasvontunnistuksen huijaamisen ilmaisumenetelmää.
2

Software-based countermeasures to 2D facial spoofing attacks

Komulainen, J. (Jukka) 11 August 2015 (has links)
Abstract Because of its natural and non-intrusive interaction, identity verification and recognition using facial information is among the most active areas in computer vision research. Unfortunately, it has been shown that conventional 2D face recognition techniques are vulnerable to spoofing attacks, where a person tries to masquerade as another one by falsifying biometric data and thereby gaining an illegitimate advantage. This thesis explores different directions for software-based face anti-spoofing. The proposed approaches are divided into two categories: first, low-level feature descriptors are applied for describing the static and dynamic characteristic differences between genuine faces and fake ones in general, and second, complementary attack-specific countermeasures are investigated in order to overcome the limitations of generic spoof detection schemes. The static face representation is based on a set of well-known feature descriptors, including local binary patterns, Gabor wavelet features and histogram of oriented gradients. The key idea is to capture the differences in quality, light reflection and shading by analysing the texture and gradient structure of the input face images. The approach is then extended to the spatiotemporal domain when both facial appearance and dynamics are exploited for spoof detection using local binary patterns from three orthogonal planes. It is reasonable to assume that no generic spoof detection scheme is able to detect all known, let alone unseen, attacks scenarios. In order to find out well-generalizing countermeasures, the problem of anti-spoofing is broken into two attack-specific sub-problems based on whether the spoofing medium can be detected in the provided view or not. The spoofing medium detection is performed by describing the discontinuities in the gradient structures around the detected face. If the display medium is concealed outside the view, a combination of face and background motion correlation measurement and texture analysis is applied. Furthermore, an open-source anti-spoofing fusion framework is introduced and its system-level performance is investigated more closely in order to gain insight on how to combine different anti-spoofing modules. The proposed spoof detection schemes are evaluated on the latest benchmark datasets. The main findings of the experiments are discussed in the thesis. / Tiivistelmä Kasvokuvaan perustuvan henkilöllisyyden tunnistamisen etuja ovat luonnollinen vuorovaikutus ja etätunnistus, minkä takia aihe on ollut erittäin aktiivinen tutkimusalue konenäön tutkimuksessa. Valitettavasti tavanomaiset kasvontunnistustekniikat ovat osoittautuneet haavoittuvaisiksi hyökkäyksille, joissa kameralle esitetään jäljennös kohdehenkilön kasvoista positiivisen tunnistuksen toivossa. Tässä väitöskirjassa tutkitaan erilaisia ohjelmistopohjaisia ratkaisuja keinotekoisten kasvojen ilmaisuun petkuttamisen estämiseksi. Työn ensimmäisessä osassa käytetään erilaisia matalan tason piirteitä kuvaamaan aitojen ja keinotekoisten kasvojen luontaisia staattisia ja dynaamisia eroavaisuuksia. Työn toisessa osassa esitetään toisiaan täydentäviä hyökkäystyyppikohtaisia vastakeinoja, jotta yleispätevien menetelmien puutteet voitaisiin ratkaista ongelmaa rajaamalla. Kasvojen staattisten ominaisuuksien esitys perustuu yleisesti tunnettuihin matalan tason piirteisiin, kuten paikallisiin binäärikuvioihin, Gabor-tekstuureihin ja suunnattujen gradienttien histogrammeihin. Pääajatuksena on kuvata aitojen ja keinotekoisten kasvojen laadun, heijastumisen ja varjostumisen eroavaisuuksia tekstuuria ja gradienttirakenteita analysoimalla. Lähestymistapaa laajennetaan myös tila-aika-avaruuteen, jolloin hyödynnetään samanaikaisesti sekä kasvojen ulkonäköä ja dynamiikkaa irroittamalla paikallisia binäärikuvioita tila-aika-avaruuden kolmelta ortogonaaliselta tasolta. Voidaan olettaa, ettei ole olemassa yksittäistä yleispätevää vastakeinoa, joka kykenee ilmaisemaan jokaisen tunnetun hyökkäystyypin, saati tuntemattoman. Näin ollen työssä keskitytään tarkemmin kahteen hyökkäystilanteeseen. Ensimmäisessä tapauksessa huijausapuvälineen reunoja ilmaistaan analysoimalla gradienttirakenteiden epäjatkuvuuksia havaittujen kasvojen ympäristössä. Jos apuvälineen reunat on piilotettu kameran näkymän ulkopuolelle, petkuttamisen ilmaisu toteutetaan yhdistämällä kasvojen ja taustan liikkeen korrelaation mittausta ja kasvojen tekstuurianalyysiä. Lisäksi työssä esitellään vastakeinojen yhdistämiseen avoimen lähdekoodin ohjelmisto, jonka avulla tutkitaan lähemmin menetelmien fuusion vaikutuksia. Tutkimuksessa esitetyt menetelmät on kokeellisesti vahvistettu alan viimeisimmillä julkisesti saatavilla olevilla tietokannoilla. Tässä väitöskirjassa käydään läpi kokeiden päähavainnot.

Page generated in 0.0633 seconds