• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel dopants for n-type doping of electron transport materials: cationic dyes and their bases

Li, Fenghong 04 April 2005 (has links) (PDF)
The history of silicon technology showed that controlled doping was a key step for the realization of e®ective, stable and reproducible devices. When the conduction type was no longer determined by impurities but could be controlled by doping, the breakthrough of classical microelectronics became possible. Unlike inorganic semiconductors, organic dyes are up to now usually prepared in a nominally undoped form. However, controlled and stable doping is desirable in many organic-based devices as well. If we succeed in shifting the Fermi level towards the transport states, this could reduce ohmic losses, ease carrier injection from contacts and increase the built-in potential of Schottky- or pn-junctions.
2

Novel dopants for n-type doping of electron transport materials: cationic dyes and their bases

Li, Fenghong 28 April 2005 (has links)
The history of silicon technology showed that controlled doping was a key step for the realization of e®ective, stable and reproducible devices. When the conduction type was no longer determined by impurities but could be controlled by doping, the breakthrough of classical microelectronics became possible. Unlike inorganic semiconductors, organic dyes are up to now usually prepared in a nominally undoped form. However, controlled and stable doping is desirable in many organic-based devices as well. If we succeed in shifting the Fermi level towards the transport states, this could reduce ohmic losses, ease carrier injection from contacts and increase the built-in potential of Schottky- or pn-junctions.

Page generated in 0.0928 seconds