Spelling suggestions: "subject:"kao's"" "subject:"katz's""
1 |
Kato's Perturbation Theorem and honesty theoryWong, Chin Pin January 2015 (has links)
We study an additive perturbation theorem for substochastic semigroups which is known as Kato's Theorem. There are two previously-known generalisations of Kato's Theorem, namely for abstract state spaces and for KB-spaces. We prove a version of Kato's Theorem for a class of spaces which encompasses both, namely ordered Banach spaces with generating cone and monotone norm. We also study a property of the perturbed semigroup in Kato's Theorem known as honesty of the semigroup. We add a few results to the fairly extensive existing theory of honesty for Kato's Theorem for abstract state spaces. In light of our new generalisation of Kato's Theorem to ordered Banach spaces with monotone norm, we investigate generalising the theory of honesty to these spaces as well. The results for the general case are less complete as many of the results for the case of abstract state spaces depend on the additive norm structure of the space. We also consider some new applications of honesty theory in abstract state spaces. We begin by applying honesty theory to the study of the heat equation on graphs. We prove that honesty of the heat semigroup coincides with a concept known as stochastic completeness of the graph which has been studied independently of honesty. We then look at the application of honesty theory to quantum dynamical semigroups. We show that honesty is the natural generalisation of the concept of conservativity of quantum dynamical semigroups. Conservative quantum dynamical semigroups are known to have certain "nice" properties. We show that similar properties hold for honest semigroups using honesty theory results. Finally, we consider a form of boundary perturbations in the context of transport semigroups. There exists an analogous theory of honesty for this set-up. We formulate a general result from which honesty results of both Kato's Theorem and transport semigroups can be derived.
|
2 |
O teorema espectral e a propriedade de \"self-adjointness\" para alguns operadores de Schrödinger / The spectral theorem and the self-adjointness property for some Schrödinger operatorsRodrigo Augusto Higo Mafra Cabral 18 December 2014 (has links)
Neste texto são demonstrados, a partir do ponto de vista da teoria dos espaços de Hilbert e da teoria das C*-álgebras, teoremas relacionados a operadores auto-adjuntos em espaços de Hilbert, entre os quais estão o Teorema Espectral, o teorema de Kato-Rellich e a desigualdade de Kato. Também são dadas aplicações destes teoremas a alguns operadores de Schrödinger provenientes da Física-Matemática. / In this text we prove, within the Hilbert spaces theory and C*-algebras points of view, some theorems which are related to self-adjoint operators acting on Hilbert spaces, among which are the Spectral Theorem, the Kato-Rellich theorem and Kato\'s inequality. Also, some applications to Schrödinger operators coming from the Mathematical-Physics context are given.
|
3 |
O teorema espectral e a propriedade de \"self-adjointness\" para alguns operadores de Schrödinger / The spectral theorem and the self-adjointness property for some Schrödinger operatorsCabral, Rodrigo Augusto Higo Mafra 18 December 2014 (has links)
Neste texto são demonstrados, a partir do ponto de vista da teoria dos espaços de Hilbert e da teoria das C*-álgebras, teoremas relacionados a operadores auto-adjuntos em espaços de Hilbert, entre os quais estão o Teorema Espectral, o teorema de Kato-Rellich e a desigualdade de Kato. Também são dadas aplicações destes teoremas a alguns operadores de Schrödinger provenientes da Física-Matemática. / In this text we prove, within the Hilbert spaces theory and C*-algebras points of view, some theorems which are related to self-adjoint operators acting on Hilbert spaces, among which are the Spectral Theorem, the Kato-Rellich theorem and Kato\'s inequality. Also, some applications to Schrödinger operators coming from the Mathematical-Physics context are given.
|
4 |
Generalizations Of The Quantum Search AlgorithmTulsi, Tathagat Avatar 27 April 2009 (has links)
Quantum computation has attracted a great deal of attention from the scientific community in recent years. By using the quantum mechanical phenomena of superposition and entanglement, a quantum computer can solve certain problems much faster than classical computers. Several quantum algorithms have been developed to demonstrate this quantum speedup. Two important examples are Shor’s algorithm for the factorization problem, and Grover’s algorithm for the search problem. Significant efforts are on to build a large scale quantum computer for implementing these quantum algorithms.
This thesis deals with Grover’s search algorithm, and presents its several generalizations that perform better in specific contexts. While writing the thesis, we have assumed the familiarity of readers with the basics of quantum mechanics and computer science. For a general introduction to the subject of quantum computation, see [1].
In Chapter 1, we formally define the search problem as well as present Grover’s search algorithm [2]. This algorithm, or more generally the quantum amplitude amplification algorithm [3, 4], drives a quantum system from a prepared initial state (s) to a desired target state (t). It uses O(α-1 = | (t−|s)| -1) iterations of the operator g = IsIt on |s), where { IsIt} are selective phase inversions selective phase inversions of the corresponding states. That is a quadratic speedup over the simple scheme of O(α−2) preparations of |s) and subsequent projective measurements. Several generalizations of Grover’s algorithm exist.
In Chapter 2, we study further generalizations of Grover’s algorithm. We analyse the iteration of the search operator S = DsI t on |s) where Ds is a more general transformation than Is, and I t is a selective phase rotation of |t) by angle . We find sufficient conditions for S to produce a successful quantum search algorithm.
In Chapter 3, we demonstrate that our general framework encapsulates several previous generalizations of Grover’s algorithm. For example, the phase-matching condition for the search operator requires the angles and and to be almost equal for a successful quantum search. In Kato’s algorithm, the search operator is where Ks consists of only single-qubit gates, which are easier to implement physically than multi-qubit gates. The spatial search algorithms consider the search operator where is a spatially local operator and provides implementation advantages over Is. The analysis of Chapter 2 provides a simpler understanding of all these special cases.
In Chapter 4, we present schemes to improve our general quantum search algorithm, by controlling the operators through an ancilla qubit. For the case of two dimensional spatial search problem, these schemes yield an algorithm with time complexity . Earlier algorithms solved this problem in time steps, and it was an open question to design a faster algorithm. The schemes can also be used to find, for a given unitary operator, an eigenstate corresponding to a specified eigenvalue.
In Chapter 5, we extend the analysis of Chapter 2 to general adiabatic quantum search. It starts with the ground state |s) of an initial Hamiltonian Hs and evolves adiabatically to the target state |t) that is the ground state of the final Hamiltonian The evolution uses a time dependent Hamiltonian HT that varies linearly with time . We show that the minimum excitation gap of HT is proportional to α. Also, the ground state of HT changes significantly only within a very narrow interval of width around the transition point, where the excitation gap has its minimum. This feature can be used to reach the target state (t) using adiabatic evolution for time
In Chapter 6, we present a robust quantum search algorithm that iterates the operator on |s) to successfully reach |t), whereas Grover’s algorithm fails if as per the phase-matching condition. The robust algorithm also works when is generalized to multiple target states. Moreover, the algorithm provides a new search Hamiltonian that is robust against certain systematic perturbations.
In Chapter 7, we look beyond the widely studied scenario of iterative quantum search algorithms, and present a recursive quantum search algorithm that succeeds with transformations {Vs,Vt} sufficiently close to {Is,It.} Grover’s algorithm generally fails if while the recursive algorithm is nearly optimal as long as , improving the error tolerance of the transformations.
The algorithms of Chapters 6-7 have applications in quantum error-correction, when systematic errors affect the transformations The algorithms are robust as long as the errors are small, reproducible and reversible. This type of errors arise often from imperfections in apparatus setup, and so the algorithms increase the flexibility in physical implementation of quantum search.
In Chapter 8, we present a fixed-point quantum search algorithm. Its state evolution monotonically converges towards |t), unlike Grover’s algorithm where the evolution passes through |t) under iterations of the operator . In q steps, our algorithm monotonically reduces the failure probability, i.e. the probability of not getting |t), from . That is asymptotically optimal for monotonic convergence. Though the fixed-point algorithm is of not much use for , it is useful when and each oracle query is highly expensive.
In Chapter 9, we conclude the thesis and present an overall outlook.
|
5 |
Autour des nombres de Tamagawa / On Tamagawa NumbersLaurent, Arthur 28 June 2013 (has links)
Les nombres de Tamagawa des courbes elliptiques apparaissent dans la formulation de la conjecture de Birch et Swinnerton-Dyer comme certains facteurs locaux. Bloch et Kato (1990) ont trouvé une vaste généralisation de cette définition classique en termes de la théorie de Hodge p-adique. Ils ont associé un nombre de Tamagawa Tam(T) à tout réseau T de représentations p-adiques de de Rham au sens de J.-M. Fontaine. Ces nombres interviennent dans les conjectures de Bloch et Kato sur les valeurs spéciales des fonctions L des motifs.J.-M. Fontaine et B.Perrin-Riou ont formulé une conjecture reliant Tam(T) et le nombre de Tamagawa Tam(T*}(1)) de la représentation duale. Cette conjecture est connue pour les représentations cristallines ce qui permet de calculer explicitement les nombres de Tamagawa des représentations cristallines dont les poids de Hodge-Tate sont tous positifs. En revanche, dans la plupart des autres cas, nous n'avons pas de méthode de calcul explicite. Cette thèse a pour but de donner un encadrement des nombres de Tamagawa des représentations absolument cristallines le long de la tour cyclotomique sans hypothèses supplémentaires sur les poids de Hodge-Tate. Le premier chapitre de cette thèse est dédié à des rappels sur la théorie de Hodge p-adique, la classification de Fontaine des représentations p-adique de corps locaux via la théorie des (phi, Gamma)-modules, sur la cohomologie galoisienne, sur les modules de Wach ou sur la cohomologie d'Iwasawa. Le second chapitre est dédié à l'exponentielle de Bloch and Kato. Seront rappelées sa définition et sa construction de l'exponentielle de Bloch and Kato en termes de (phi, Gamma)-modules faite par D.Benois. Cette dernière construction permet de généraliser deux résultats de D.Benois et L.Berger qui relient l'exponentielle aux modules de Wach et qui permet de décrire des objets qui apparaissent naturellement dans l'étude des nombres de Tamagawa. Le dernier chapitre est le cœur de cette thèse. Nous commencerons en définissant les nombres de Tamagawa Tam(T) et en donnant certaines propriétés et résultats déjà connus. Nous énonçons ensuite le théorème final qui donne un encadrement des nombres de Tamagawa d'une représentation absolument cristalline V. Y sont également donnés certains cas d'égalité qui permettent de retrouver des formules connues --- lorsque V est positive ou lorsqu'elle provient d'une courbe elliptique et plus généralement d'un groupe formel de dimension 1 et de hauteur 2. Pour prouver ces résultats, nous écrivons les nombres de Tamagawa sous forme d'un indice généralisé dans lequel apparaissent les objets étudiés dans le chapitre précédent. La thèse se termine avec l'étude de plusieurs cas particuliers qui permettent de retrouver des résultats déjà connus. / Tamagawa numbers of elliptic curves appear in the Birch and Swinnerton-Dyer conjecture as local factors. Bloch and Kato generalized the definition using p-adic Hodge theory in 1990. Indeed they associated a number Tam(T) to each lattice T of de Rham representation in the sense of J-M\,Fontaine. This Tamagawa numbers are used in the conjectures of Bloch and Kato on the special values of L-functions of motives.J-M\,Fontaine and B.\,Perrin-Riou expressed a conjecture linking Tam(T) to the Tamagawa number Tam(T*(1)) of the dual representation. This conjecture is now well known for crystalline representations. This yields an explicit formula for Tamagawa number of crystalline p-adic representations having positive Hodge-Tate weights.On the other hand, we have no explicit formula for Tamagawa numbers of most of the crystalline representations. The purpose of the thesis is to give bounds of Tamagawa numbers of crystalline p-adic representations of unramified local field along the cyclotomic tower without further conditions on the Hodge-Tate weights.The first chapter of this thesis is dedicated to reminders on p-adic Hodge-Tate theory, Fontaine's classification of p-adic representations of local fields via (phi, Gamma)-modules, Galois and Iwasawa cohomology, Wach modules etc.The second chapter is dedicated to the Bloch and Kato's exponential map. We will recall its definition and its construction in terms of (phi, Gamma)-modules due to D.Benois. This construction will lead to the generalization of two results of D.\,Benois and L.\,Berger which link the exponential map and Wach modules and give a good description of the objects which naturally appear in the study of Tamagawa numbers.The last chapter is the heart of the thesis. We will begin by giving a definition of Tamagawa number Tam(T) and some first properties and results on theses numbers.We will next express the main theorems which give bounds of Tamagawa numbers of crystalline p-adic representations of unramified local field along the cyclotomic tower. We will also give equality conditions. This allows us to recover already known results such as Tamagawa numbers of positive crystalline representations or of representations coming from elliptic curves.To prove these results, we will write Tamagawa numbers as a generalized index of the modules defined in terms of Wach modules. Theses modules have been deeply studied in the second chapter of this thesis.
|
Page generated in 0.0333 seconds