• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1885
  • 395
  • 1
  • 1
  • 1
  • Tagged with
  • 2284
  • 1667
  • 581
  • 545
  • 348
  • 317
  • 315
  • 309
  • 227
  • 209
  • 185
  • 178
  • 138
  • 103
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
941

Construction of Five-Membered Heterocyclic Compounds via Radical Cyclization

Berlin, Stefan January 2003 (has links)
This thesis describes how radical cyclization chemistry can be applied for the construction of heterocyclic compounds. In the first part, a series of electron deficient α-phenylselenenylalkenes were prepared via a PhSeCl-addition/HCl-elimination sequence. Allyl- and propargylamines readily underwent conjugate addition to these species to produce pyrrolidines or dihydropyrrol derivatives, after triethylborane initiated reductive radical cyclization in the presence of tris(trimethylsilyl)silane. The second part describes a convergent synthesis of the pineal hormone melatonin. The indole nucleus is secured via a tris(trimethylsilyl)silane mediated 5-exo radical cyclization. The protocol provides convenient and simple access to compounds useful for studies of biological activity and structure activity relationships. The third part describes construction of substituted tetrahydrofuran-3-ones and pyrrolidin-3-ones. Regioselective ring-opening of epoxides or aziridines with benzeneselenolate/tellurolate, followed by Michael addition to electron deficient alkynes afforded the corresponding O/N-vinylated compounds. The tetrahydrofuran-3-ones and pyrrolidin-3-ones were secured via radical carbonylation/reductive cyclization using pressurized carbon monoxide (80 atm). The fourth part is concerned with the effect of an N-protecting group on the cyclization of 2-substituted-3-aza-5-hexenyl radicals. Relative energies for reactants and transition states were determined using density functional calculations. Reactant and transition state conformers leading to cis-product were lower in energy than those leading to trans-product. The results can be explained by the unfavorable 1,2-strain present in chair-equatorial and boat-equatorial conformers.
942

Formation of nanoparticles by laser-activated processes

Landström, Lars January 2003 (has links)
Due to the small dimensions, nanoparticles and materials consisting of nano-sized building blocks exhibit unique — mostly superior — properties, well differing from their bulk counterpart. Most of the novel properties of nanoparticles (and nanomaterials) are size-dependent, while the majority of the common gasphase methods used for generation of nanopowders result in different, usually wide, size-dispersions. Further understanding of the fundamental processes leading to particle formation is therefore required, leading to better control of size and distribution of the nanoparticles, thus allowing engineering of the desired properties for both nanoparticles and nanomaterials. In this present thesis, nanoparticles were produced by two different gasphase techniques activated by lasers, namely laser chemical vapor deposition (LCVD) and pulsed laser ablation (PLA). Optical emission spectroscopy (OES) was performed on thermal (blackbody-like) radiation originating from laser-excited particles during LCVD and coupled to measured size-distributions. In-situ monitoring of size-distributions by a differential mobility analyzer (DMA) was employed during PLA. In addition, deposited nanoparticles were characterized by a variety of standard techniques. Different cooling mechanisms of the laser-excited gasphase particles were identified based on temperature and emitted intensity data extracted from OES measurements. The strong evaporation at elevated temperatures also allowed direct size manipulation of the particles. By monitoring the intensity of the emitted thermal radiation and the scattered laser line, strong indications about the so called coagulation limit, where a broadening of the size-distribution occurred, was obtained. The DMA monitoring, supported by modeling, gave information about different mechanisms (thermal and photochemical) of the ablation process, and particle condensation well below the ablation threshold was also found.
943

Interactions in Dye-sensitized Solar Cells

Greijer Agrell, Helena January 2003 (has links)
The interactions between the molecular constituents in dye-sensitized solar cells were studied with UV-VIS and IR spectroscopy, Raman scattering, conductivity and electron accumulation measurements. From stability studies of the dye, bis(tetrabutylammonium)cis-bis(thiocyanato) bis(2,2’-bipyridine-4-carboxylic acid, 4’-carboxylate) ruthenium(II), in the complete solar cell, the thiocyanate ion ligand was found to be lost from the dye. A method was developed to study mechanisms in a sealed dye-sensitized solar cell using resonance Raman scattering (RRS). RRS studies of a complete dye-sensitized solar cell including iodine and lithium iodide in the electrolyte indicate that triiodide exchange the SCN- ligand of the dye. It was proposed that an ion pair Li+…I3- formation occurred, which, by a reduced electrostatic repulsion between I3- and SCN- facilitated the exchange of these anions at Ru(II) of the dye. The additive 1-methylbenzimidazole suppressed the SCN-/I3- ligand exchange by forming a complex with Li+. In order to study charge transport in nanostructured TiO2 films permeated with electrolyte, a technique was developed for determining activation energies of conduction, electron accumulation and effective mobility. Two regions were distinguished from the relation between conductivity and electron concentration. In the first region (~1-20 electrons per TiO2 particle), which resembles best the region where the nanostructured dye-sensitized solar cell operates, the results can be fitted to some extent with a trapping/detrapping or a hopping model for charge transport, but not with a conduction band model. For the second region (> 20 electrons per TiO2 particle), charge transport by electrons in the conduction band seems to be the most applicable model. Through this work many effects from the interplay between the solar cell components were observed. These observations emphasize the importance of well-balanced interactions in dye-sensitized solar cells.
944

Conducting Polymers Containing In-Chain Metal Centres : Electropolymerisation and Charge Transport

Hjelm, Johan January 2003 (has links)
Conjugated polymers that exhibit high electronic conductivities play key roles in the emerging field of molecular electronics. In particular, linking metal centres with useful electrochemical, photophysical, or catalytic properties to the backbone, or within the polymer chain itself, is a topic which has attracted a significant amount of interest lately. Structurally rigid monomers that can be electropolymerised to form highly conducting molecular wires may provide new insights into conduction mechanisms, e.g., exploiting resonant superexchange (electron-hopping) by tuning the energies of redox centre and bridge states. The focus of this thesis lies on the electrochemical investigation of preparation, growth dynamics, and charge transport dynamics of oligothiophene/transition metal hybrid materials. The incorporation of ruthenium(II) and osmium(II) terpyridine complexes into such polymeric assemblies was accomplished by an electropolymerisation procedure, to produce rod-like oligothienyl-bridged metallopolymers. The properties of the monomers used were characterised by optical spectroscopy and electrochemical techniques. Charge transport was studied in detail for some of the materials created, and it was found that the electron transport rate and dc conductivity was enhanced by up to two orders of magnitude compared to relevant non-conjugated polymers, demonstrating the usefulness of this approach for optimization of charge transport in metallopolymers. The charge transport diffusion coefficent was determined to (2.6 ± 0.5) x 10-6 cm2 s-1 for a quaterthienyl-bridged {Os(tpy)2} polymer by use of an electrochemical steady-state method carried out using a transistor-like experimental geometry. It was found that charge transport in these materials is concentration-gradient driven. The rate limiting step of the charge transport process was investigated using electrochemical impedance spectroscopy. The electropolymerisation dynamics of one of the monomers was studied using microelectrodes, and the results obtained shows that electropolymerisation is highly efficient, and indicate that mass transport controls this process. Through a combination of controlled potential deposition and SEM imaging it was demonstrated that it is possible to exploit the edge effect of microelectrodes to promote film growth in a direction co-planar with the electrode surface.
945

Sol−Gel Synthesis of CMR Manganites

Pohl, Annika January 2004 (has links)
The development of more advanced materials forms the basis of technological progress. One group of fascinating compounds with many potential applications in spintronic devices are the mixed-valence perovskite manganites. These have attracted considerable interest during the last decade through their very large magnetoresistance near the Curie Temperature. Although the properties of a material determinie any application, the development of reliable and flexible synthesis methods is crucial, as is the understanding of these methods. Knowledge of how different materials are formed is also of general importance in tailoring new materials. The aim of this project has therefore been not only to develop a new synthesis route, but also to understand the mechanisms involved. This thesis describes the synthesis and characterization of a novel manganese alkoxide and its use in sol–gel processing of magnetoresistive perovskite manganites. In searching for a soluble manganese alkoxide for sol–gel processing, we found that the methoxy-ethoxide, [Mn19O12(moe)14(moeH)10]·moeH, has a high solubility in appropriate organic solvents. Being 1.65 nm across, it is one of the largest alkoxides reported; it is also of interest because of its (for oxo-alkoxides) rare planar structure. After mixing with La, Nd, Ca, Sr, and Ba methoxy-ethoxides, [Mn19O12(moe)14(moeH)10]·moeH was used in the first purely alkoxide based sol–gel processing of perovskites manganites. The phase evolution on heating xerogel powders to 1000°C was studied, and thin films were prepared by spin-coating. It was found that the easily oxidised Mn-alkoxide facilitates the formation of high oxygen-excess modifications of the perovskites. The reactive precursor system yields fully hydrolysed gels almost without organic residues, but the gel absorbs CO2 from the air, leading to carbonate formation. The carbonate decomposition is the limiting step in oxide formation. Transport measurements of La0.67Ca0.33MnO3 films on LaAlO3 substrate show that all-alkoxide sol–gel derived films can compete with PLD films in terms of quality of epitaxy and transport. The somewhat different behaviour of the sol–gel derived films compared to PLD films is attributed to differences in morphology and oxygen stoichiometry.
946

Towards the Development of Photoswitchable β-Hairpin Mimetics

Erdélyi, Máté January 2004 (has links)
Peptide secondary structure mimetics are important tools in medicinal chemistry, as they provide analogues of endogeneous peptides with new physicochemical and pharmacological properties. The β-hairpin motif has been shown to be involved in numerous physiological processes, among others in regulation of eucariotic gene transcription. This thesis addresses the design, synthesis and conformational analysis of photoswitchable β-hairpin mimetics. The developmental work included the establishment of an improved procedure for cross coupling of aryl halides with terminal alkynes. Microwave mediated Sonogashira couplings in closed vessels were optimized under homogeneous and solid-phase conditions furnishing excellent yields for a large variety of substrates within 5 – 25 minutes. In addition, microwave heating was shown not to have any non-conventional effect on the reaction rate. Furthermore, the most important factors affecting β-hairpin stability were evaluated. Studies of tetrapeptide and decapeptide analogues revealed the essential role of the β-turn in initiation of hairpin folding. Moreover, hydrogen bonding was shown to be the main interchain stabilizing force, whereas hydrophobic interactions were found to be relatively weak. Nevertheless, hydrophobic packing appears to provide an important contribution to the thermodynamic stability of β-hairpins. Photoswitchable peptidomimetics were prepared by incorporation of various stilbene moieties into tetra- and decapeptides. Synthesis, photochemical isomerisation and spectroscopic conformational analysis of the compounds were performed.
947

Development of Sheathless Electrospray Mass Spectrometry and Investigations of Associated Electrochemical Processes – A Fairy Tale / Utveckling av lågflödeselektrospray-masspektrometri samt undersökningar av associerade elektrokemiska processer – en fésaga

Nilsson, Stefan January 2004 (has links)
In microscale separations, such as capillary electrophoresis and -liquid chromatography, the liquid flow rates are in the order of nanoliters per second. If such flow rates are to be interfaced with a mass spectrometer (MS) using electrospray (ES) ionization, without loss of separation efficiency, each fraction of the analyte zone must remain undisturbed by the high voltage contact necessary for ES. One design that accomplishes this is the pure sheathless approach, where a thin, vapor deposited metal film covers the outside of the electrospray emitter tip. This thesis describes the development of such sheathless emitters. The lifetimes of polymer embedded gold (“fairy dust”) or graphite (“black dust”) emitters were shown to by far exceed those of previously used conductive films. In addition, the production of emitters with these coatings was substantially simplified. The increase in durability was found to be due to enhanced resistance towards the electrochemical processes associated with ES. In analogy, the reasons for the limited durability of previously used methods were correlated with their tendency to oxidize, or be mechanically removed, during electrochemical reactions. Electrochemical processes associated with the electrospray potential were also found to seriously disturb analyses in which porous graphitic carbon was used as the separation medium. A proper choice of grounding point locations eliminated these disturbances. At last, the differences regarding analytical performance of several sheathless interface configurations, used in capillary liquid chromatography, were examined. The best performance was obtained when a pure sheathless emitter with a conductive layer of polyimide and graphite was coupled to the LC column through a Teflon sleeve.
948

Nano-porous Alumina, a Potential Bone Implant Coating

Karlsson, Marjam January 2004 (has links)
This thesis describes a method of growing a highly adherent nano-porous alumina coating on titanium implant materials, a design which might be useful in hard tissue replacement. Alumina layers were formed by anodisation of aluminium, which had been deposited on titanium and titanium alloys by electron beam evaporation. Mechanical testing showed the coatings’ shear and tensile strength to be ~20MPa and ~10MPa respectively. Human osteoblasts were cultured on purchased membranes, produced in the same way with similar characteristics as the coating mentioned above. Cell viability, proliferation and phenotype were assessed by measuring redox reactions, DNA, tritiated thymidine incorporation and alkaline phosphatase production. Results showed normal osteoblastic growth patterns with increasing cell numbers the first two weeks after which cell growth decreased and alkaline phosphatase production increased, indicating that osteoblastic phenotype was retained on the alumina. Flattened cell morphology with filipodia attached to the pores of the material was seen. Implants frequently trigger inflammatory responses due to accumulation and activation of cells such as polymorphonuclear granulocytes (PMN), also called neutrophils. Activation and morphology of human PMN in response to nano-porous alumina with two pore sizes (20 and 200 nm) was investigated by luminol-amplified chemiluminescence, granule enzyme deposition measurement, optical and scanning electron microscopy. Activation was observed on both membrane types, however less pronounced on the 200 nm alumina. For both membranes a decrease in activation was seen after coating with fibrinogen, collagen I and serum (more pronounced for the two latter). On fibrinogen-coated alumina many flattened cells were observed, indicating frustrated phagocytosis. Finally when culturing osteoblasts on non-coated and collagen-coated membranes (after exposure to PMN) many more cells had established on the protein-coated surface after 24 h. The overall results indicate that it might be possible to produce a novel bone implant coating by anodisation of aluminium deposited on titanium and that this material will support osteoblast adhesion and proliferation. Furthermore neutrophil activation can be suppressed when coating the alumina with collagen I, which is beneficial considering the fact that this protein also is essential for bone formation.
949

Electrochemical Studies of Redox Properties and Diffusion in Self-Assembled Systems

Kostela, Johan January 2004 (has links)
In this thesis electron transfer reactions and diffusion of redox molecules in three different types of self-aggregated structures are investigated. Electrochemistry was used to investigate the redox potential and diffusion coefficients for redox active molecules with different polarity. The first aggregate system studied was the micellar phase. The role of electrostatic interactions in the stability of an amphiphilic viologen was investigated for differently charged micelles. It was concluded that the electrostatic environment changed the redox potential of the viologen. In differently charged micelles the redox potential was more negative compared to when the viologen was situated in micelles with the same charge. The second structure investigated is a very fascinating phase, the bicontinuous cubic phase, with its continuous channels of water and an apolar bilayer. Its domains with different polarity made it possible to solvate both hydrophilic and hydrophobic molecules. An amphiphilic molecule will have its head-group at the interface between the apolar and polar part, and can move lateral within the bilayer. All molecules investigated made contact with and reacted at the surface of the electrode. The diffusion of water bound species diffusing in the water channels was 3-4 times slower than in water. Hydrophobic and amphiphilic molecules were much more hindered, probably because the cubic phase was not defect free. The third kind of structure studied was a lamellar system. This phase is built up from planar bilayers that are stacked with a repeating distance and with water in between. A hydrophilic molecule was severely hindered to move in the direction perpendicular to the bilayer plane. Upon addition of the peptide melittin the current increased, due to pore formation in the bilayer.
950

Developments in the Field of Aza-Diels-Alder Reactions, Catalytic Michael Additions and Automated Synthesis

Modin, Stefan January 2004 (has links)
The development of new aza-bicyclic structures with potential applications as ligands synthesised via an aza-Diels-Alder cycloaddition has been studied. The studies are concerning the i) development of large scale aza-Diels-Alder reaction, ii) development of a fast and simple route to bicyclic diamine ligands, iii) development of new aza-Diels-Alder adducts from different dienes, iv) development and application of bicyclic N,P ligands for catalytic Michael additions and v) development of robotized asymmetric transfer hydrogenation reactions. i) Development of large-scale aza-Diels-Alder reaction giving up to 110 g pure product, in ordinary laboratory equipment without the need of any flash chromatography. ii) Development of a new synthetic route to bicyclic diamine ligands highly useful for asymmetric rearrangement of olefin oxides to allylic alcohols and thereby shortening the ligand synthesis dramatically and moreover providing with a faster access to those ligands. iii) Expanding the scope of the aza-Diels-Alder reaction by the use of spirodienes and anthracene as dienes. iv) Development and application of a new bidentate ligands for catalytic Michael addition to cyclic enones using 5 mol % ligand giving the product in 71 % ee. v) Utilisation of Chemspeed ASW 2000 in catalytic transfer hydrogenation and solving of problems regarding use of highly air sensitive reactions in an automated environment.

Page generated in 0.7215 seconds