• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sex steroid hormones regulate responses to social challenge and opportunity in the convict cichlid, Amatitliana nigrofasciata

Sessa, Anna Kristina 23 October 2013 (has links)
Steroid hormones play an important role in modulating behavioral responses to various social stimuli. However, relatively little is known about how hormones respond to social stimuli and their modulation of subsequent behavior. Variation in the hormonal regulation of behavior across species has complicated the overall understanding of the hormone-behavior dynamic. In order to further elucidate the interplay of hormones and behavior in social situations, we exposed males of the monogamous convict cichlid Amatitliana nigrofasciata to three social stimuli: gravid female, intruder male and nonsocial neutral stimulus. We used a repeated exposure paradigm to create behavioral profiles and explore how sex steroid hormones respond to and regulate social behavior. Results show clear behavioral profiles in different social situations with 11-KT acting as the active androgen, increasing in response to social stimuli. Pharmacological manipulations using androgen and estrogen receptor agonists and antagonists exposed complex control over digging behavior based on social context, showed a unique decrease in aggressive behavior due to blocking the androgen receptors and a ubiquitous drug effect on vertical display. Results create well defined context-specific behavior profiles and extends our understanding of particular social behavior and how sex steroid hormones are involved in social situations and the behavioral response. / text
2

REGULATION OF THE ENDOCRINE STRESS RESPONSE AND THE MODULATING EFFECTS OF SEX STEROIDS IN ZEBRAFISH (Danio rerio)

Fuzzen, Meghan 22 April 2010 (has links)
The purpose of this study was to characterize the endocrine stress response of zebrafish (Danio rerio) and to test if this response is modified by sex or the major sex steroids 17β-estradiol (E2) and 11-ketotestosterone (11KT). A standardized stress of having zebrafish swim in a beaker of stirring water resulted in rapid and transient changes in whole-body cortisol. While the cortisol response of males and females were comparable, exposure to E2 (100 ng/L) for 48 h inhibited the cortisol response of males and exposure to 11KT (100ng/L) for 48 h stimulated the cortisol response of females. The inhibitory actions of E2 were mediated in part by decreases in corticotropin releasing factor (crf) expression and decreases in the synthesis of cortisol by interrenal tissue. This research adds to the increasing knowledge of zebrafish physiology and will be useful for future studies concerning the endocrine stress response in fish.
3

Social Interactions of Lythrypnus dalli and their Effects on Aggression, Neuropeptides, Steroid metabolism, and Sex-Typical Morphology

Black, Michael Paul 01 April 2005 (has links)
Social interactions can have profound effects on the behavior, physiology, and overall fitness of an individual. An example of this in Lythrypnus dalli is the removal of a male from a social group resulting in a dominant female fish changing sex. The dominant female's transformation involves a suite of changes including brain, behavior, morphology, and physiology. Following the social trigger (male removal), sex-changing individuals' morphology, steroid levels, and changes in the behavior were quantified in the field and compared to results found previously in the laboratory. There were lower rates of aggressive and courtship behavior in the field, but the change in behavior over time had a similar pattern and there were parallels in morphology and steroid levels between lab and field sex changers. The brains of dominant females also responded to social change. Aromatase, an enzyme that converts testosterone into estrogen, and oxytocin, a neuropeptide found in mammals, have been associated with vertebrate social and reproductive behavior. The fish homologue of oxytocin, isotocin, and aromatase are both found in L. dalli. Upon removal of a male from the social group, L. dalli dominant females experienced a decrease in the number of preoptic area isotocin-immunoreactive cells over the course of sex change (7-10 days) and a decrease in brain aromatase activity (bAA) levels within hours, but not minutes, of male removal, while gonadal aromatase activity (gAA) decreased at a much slower time scale (beyond a week). Hours, but not minutes, after male removal, the sex-changing individual's bAA correlated with aggressive behavior increases and not the amount of time following male removal. Males that had just changed from female had different gonadal allocation and higher bAA levels than established males. Subordinate females had high gAA, but their bAA was between that of males and sex changers. In conclusion, dramatic changes in anatomy and neuroendocrine function can occur in response to social cues, individuals with similar reproductive behavior and external morphology can have large neuroendocrine and internal morphologic variation, and social interactions can affect steroid metabolism locally on a short time scale independent of gonadal modulation of steroids.
4

Pheromonal Mediated Behaviour and Endocrine Responses in Salmonids : The impact of Cypermethrin, Copper, and Glyphosate

Jaensson, Alia January 2010 (has links)
The effects of cypermethrin, copper and glyphosate on the endocrine system and subsequent response to female pheromones were investigated in mature male brown trout (Salmo trutta) parr.  Responses measured were the amount of strippable milt, blood plasma levels of both an androgen (11-ketotestosterone (11-KT)) and a progestin (17α,20β-dihydroxy-4-pregnen-3-one (17,20b-P)), and behavioural changes. This was done in a two phased investigation where parr were exposed to one of the following via ambient water: 1) 0.1 or 1.0 μg L-1 cypermethrin, 2) 10 or 100 μg L-1 copper (Cu2+), or 3) 150 μg L-1 glyphosate for a 96 hour period.  Phase one was a priming experiment exposing parr to a treatment followed by priming with PGF2α or ovarian fluid (OVF). Atlantic salmon (Salmo salar) parr were, also exposed to glyphosate during phase I. The second phase was centered on behavioural observations.  Exposed parr were placed in a 35,000 L stream aquarium together with two ovulated females and four anadromous males. After the experiments a blood sample was taken, milt volumes measured and testes weighed.  The plasma was analyzed for 11-KT and 17,20b-P concentrations using radioimmunoassay (RIA). Results from phase I-priming: 1.0 μg L-1 cypermethrin exposure lowered 17,20b-P and 11-KT; Copper exposure lowered milt volumes; glyphosate exposure lowered 11-KT in salmon and raised 17,20b-P in trout.  Results from phase II-behaviour: 1.0 μg L-1 cypermethrin exposure lowered 11-KT, milt and spawning behaviour; copper exposure lowered spawning behaviour and raised 11-KT; Glyphosate exposure lowered 11KT; continuous cypermethrin exposure raised 17,20b-P, 11-KT and gave a tendency towards increased aggression. It is concluded that low concentration exposure to the compounds examined can induce negative effects on male salmonid endocrine systems, either through a disruption in the olfactory system or through a direct effect. / Extern doktorand från Södertörns högskola
5

Endocrine Regulation of Dynamic Communication Signals in Gymnotiform Fish

Goldina, Anna 04 November 2011 (has links)
Communication signals are shaped by the opposing selection pressures imposed by predators and mates. A dynamic signal might serve as an adaptive compromise between an inconspicuous signal that evades predators and an extravagant signal preferred by females. Such a signal has been described in the gymnotiform electric fish, Brachyhypopomus gauderio, which produces a sexually dimorphic electric organ discharge (EOD). The EOD varies on a circadian rhythm and in response to social cues. This signal plasticity is mediated by the slow action of androgens and rapid action of melanocortins. My dissertation research tested the hypotheses that (1) signal plasticity is related to sociality levels in gymnotiform species, and (2) differences in signal plasticity are regulated by differential sensitivity to androgen and melanocortin hormones. To assess the breadth of dynamic signaling within the order Gymnotiformes, I sampled 13 species from the five gymnotiform families. I recorded EODs to observe spontaneous signal oscillations after which I injected melanocortin hormones, saline control, or presented the fish with a conspecific. I showed that through the co-option of the ancient melanocortin pathway, gymnotiforms dynamically regulate EOD amplitude, spectral frequency, both, or neither. To investigate whether observed EOD plasticities are related to species-specific sociality I tested four species; two territorial, highly aggressive species, Gymnotus carapo and Apteronotus leptorhynchus, a highly gregarious species, Eigenmannia cf. virescens, and an intermediate short-lived species with a fluid social system, Brachyhypopomus gauderio. I examined the relationship between the androgens testosterone and 11-ketotestosterone, the melanocortin a-MSH, and their roles in regulating EOD waveform. I implanted all fish with androgen and blank silicone implants, and injected with a-MSH before and at the peak of implant effect. I found that waveforms of the most territorial and aggressive species were insensitive to hormone treatments; maintaining a static, stereotyped signal that preserves encoding of individual identity. Species with a fluid social system were most responsive to hormone treatments, exhibiting signals that reflect immediate condition and reproductive state. In conclusion, variation in gymnotiform signal plasticity is hormonally regulated and seems to reflect species-specific sociality.

Page generated in 0.0655 seconds