• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Smoltification and growth retardation in New Zealand king salmon Oncorhynchus tshawytscha (Walbaum)

Iremonger, Gareth January 2008 (has links)
Growth retardation in King salmon Oncorhynchus tshawytscha (Walbaum) is a common and significant problem affecting marine farming operations in New Zealand. While the basic marine culture requirements for the King salmon species are well understood, the etiology of seawater adaptation and growth retardation remains understudied. Consequently, this study was established to investigate the physiological state and causative factors of growth retardation in collaboration with a leading New Zealand aquaculture company, New Zealand King Salmon Ltd (NZKS). Hypoosmoregulatory indicators are not currently used by marine farmers in New Zealand due to the belief that King salmon are more adaptable to seawater than their more highly cultured counterparts, Coho and Atlantic, and can be transferred to seawater anytime after a critical weight is achieved. This study sought to investigate changes in hypoosmoregulatory ability and its relation to water temperatures commonly used in the hatchery environment. This was determined by changes in the activity of the predominating seawater-adapting gill enzyme Na+/K+-ATPase, as an indirect measure of its abundance during smoltification. Changes in plasma ion profiles and the ability to regulate ions after abrupt transfer were also measured and compared with enzymatic activity throughout the austral springtime smoltification period in commercial strains of under-yearling King salmon. It was found that King salmon do undergo a distinct austral spring-time temporal increase in hypoosmoregulatory processes. This was characterised by a 2-fold increase Na+/K+-ATPase activity which was concomitant with reduced plasma Na+ in freshwater and following a seawater challenge in fish between fork lengths of 140-160 mm. Despite no consistent reduction in Na±/K+-ATPase activity during desmoltification, it was shown that the percent of ATP dependent activity specific to Na+/K+-ATPase diminished over time. Increased residual ATP dependent activity is hypothesised to be a result of apical H+-VATPase activity as a compensatory mechanism to rapidly normalise plasma Na+ during desmoltification concomitant with elevated basolateral Na+/K+-ATPase. Water temperature has been linked with the advancement and shortening of the smoltification period in several species. Gill Na+/K+-ATPase activity and hypoosmoregulatory ability in King salmon were negatively affected by increasing water temperatures above 12°C in contrast to a constant 12°C. The level of growth retardation was dependent on the time of transfer to seawater and was found to increase during a period of reducing hypoosmoregulatory ability. The transfer of growth retarded King salmon back to freshwater resulted in a complete reversal of the growth retarded state, comparable to that observed in Coho and Atlantic salmon. Growth retarded fish were able to readapt back to freshwater with higher survival and growth rates compared to the transfer of normal growing sub-adult King salmon, strongly demonstrating that growth retarded fish are more adapted to freshwater. Osmoregulatory physiology, and endocrinology during the transfer of growth retarded and normal growing fish were investigated. Overall, these results have fundamental implications for the aquaculture of King salmon that are able to be applied by industry to improve current husbandry practices.
2

Smoltification and growth retardation in New Zealand king salmon Oncorhynchus tshawytscha (Walbaum)

Iremonger, Gareth January 2008 (has links)
Growth retardation in King salmon Oncorhynchus tshawytscha (Walbaum) is a common and significant problem affecting marine farming operations in New Zealand. While the basic marine culture requirements for the King salmon species are well understood, the etiology of seawater adaptation and growth retardation remains understudied. Consequently, this study was established to investigate the physiological state and causative factors of growth retardation in collaboration with a leading New Zealand aquaculture company, New Zealand King Salmon Ltd (NZKS). Hypoosmoregulatory indicators are not currently used by marine farmers in New Zealand due to the belief that King salmon are more adaptable to seawater than their more highly cultured counterparts, Coho and Atlantic, and can be transferred to seawater anytime after a critical weight is achieved. This study sought to investigate changes in hypoosmoregulatory ability and its relation to water temperatures commonly used in the hatchery environment. This was determined by changes in the activity of the predominating seawater-adapting gill enzyme Na+/K+-ATPase, as an indirect measure of its abundance during smoltification. Changes in plasma ion profiles and the ability to regulate ions after abrupt transfer were also measured and compared with enzymatic activity throughout the austral springtime smoltification period in commercial strains of under-yearling King salmon. It was found that King salmon do undergo a distinct austral spring-time temporal increase in hypoosmoregulatory processes. This was characterised by a 2-fold increase Na+/K+-ATPase activity which was concomitant with reduced plasma Na+ in freshwater and following a seawater challenge in fish between fork lengths of 140-160 mm. Despite no consistent reduction in Na±/K+-ATPase activity during desmoltification, it was shown that the percent of ATP dependent activity specific to Na+/K+-ATPase diminished over time. Increased residual ATP dependent activity is hypothesised to be a result of apical H+-VATPase activity as a compensatory mechanism to rapidly normalise plasma Na+ during desmoltification concomitant with elevated basolateral Na+/K+-ATPase. Water temperature has been linked with the advancement and shortening of the smoltification period in several species. Gill Na+/K+-ATPase activity and hypoosmoregulatory ability in King salmon were negatively affected by increasing water temperatures above 12°C in contrast to a constant 12°C. The level of growth retardation was dependent on the time of transfer to seawater and was found to increase during a period of reducing hypoosmoregulatory ability. The transfer of growth retarded King salmon back to freshwater resulted in a complete reversal of the growth retarded state, comparable to that observed in Coho and Atlantic salmon. Growth retarded fish were able to readapt back to freshwater with higher survival and growth rates compared to the transfer of normal growing sub-adult King salmon, strongly demonstrating that growth retarded fish are more adapted to freshwater. Osmoregulatory physiology, and endocrinology during the transfer of growth retarded and normal growing fish were investigated. Overall, these results have fundamental implications for the aquaculture of King salmon that are able to be applied by industry to improve current husbandry practices.
3

Study of SAPS-like flows with the King Salmon SuperDARN radar

Drayton, Robyn Anne 06 November 2006
This thesis has two focuses. The major focus is an investigation of the nature of high-velocity ~2 km/s)ionospheric flows occasionally detected by the King Salmon SuperDARN radar at relatively low magnetic latitudes of 65^0. The second focus is a validation work on the quality of SuperDARN convection measurements. As an alternative convection-monitoring instrument, an ion drift meter onboard the DMSP satellite was chosen for comparison with SuperDARN. This study includes a broad range of velocities of up to ~1.5 km/s. Consideration of very large velocities is fundamentally important for successful research on the major topic of the thesis.<p>The validation work is performed first. Two approaches are undertaken. The first approach considers data at the raw level. SuperDARN F region line-of-sight velocities are directly compared with DMSP cross-track ion drifts in approximately the same directions. More than 200 satellite passes over the fields of view of five Northern Hemisphere and four Southern Hemisphere radars are considered. It is shown that all radars exhibit overall consistency with DMSP measurements and a linear fit line to the data has a slope of 0.8 with a tendency for SuperDARN velocities to be smaller. Radar echo range effects and the role of spatial inhomogeneity and temporal variations of the convection pattern are investigated. SuperDARN convection maps were generated for select events for which SuperDARN l-o-s data agree almost ideally with DMSP measurements.<p>Convection maps were obtained using all Northern Hemisphere SuperDARN radars. The full convection vectors were found to be in reasonable agreement with the DMSP ion drifts, although a small deterioration (~10%) was noticed. The overall agreement between SuperDARN and DMSP measurements implies SuperDARN observations are reliable for velocity magnitudes of up to ~1.5 km/s, and SuperDARN radars are suitable instruments for studying extremely fast ionospheric flows. These results also imply that radar measurements can be merged with DMSP measurements into a common data set to provide more reliable convection maps.<p>For the main focus of the thesis, a statistical investigation of the King Salmon radar echoes was performed to determine typical echo characteristics and compare them with data from other SuperDARN radars. It is shown that King Salmon regularly observes high-velocity echoes in the dusk sector at ~21:00 MLT and ~65^0 MLat. Individual events are presented with line-of-sight velocities (observed with the L-shell aligned beams) as high as 2 km/s. Statistically, the enhanced flows are the largest and cover the greatest area in the winter and are the smallest and cover the least area in the summer. Similar fast flows were discovered in the Unwin radar data (in the Southern Hemisphere, lowest magnetic latitude ~57^0) that became available near the completion time of this thesis. It is also shown that statistically, the Stokkseyri radar, which observes in the auroral zone and has a similar azimuthal orientation as King Salmon, does not observe similar high-velocity echoes. Geophysical conditions for the onset of high-velocity King Salmon flows in several individual events are then investigated. It is shown that fast flows are excited in close association with substorm progression near the King Salmon field of view. By comparing SuperDARN data with optical images obtained from the IMAGE satellite and particle data from the DMSP satellites it is shown that velocity enhancement begins at substorm onset and peaks 20-50 minutes later over a range of latitudes including the auroral and sub-auroral regions. During the substorm recovery phase, as bright aurora shifts poleward, exceptionally fast flows can be excited at the equatorial edge of the electron auroral oval and these flows can be classified as sub-auroral polarization stream (SAPS) flows. Variability of SAPS flows and their relationship to auroral oval processes are discussed. Finally, several suggestions for further research are presented.
4

Study of SAPS-like flows with the King Salmon SuperDARN radar

Drayton, Robyn Anne 06 November 2006 (has links)
This thesis has two focuses. The major focus is an investigation of the nature of high-velocity ~2 km/s)ionospheric flows occasionally detected by the King Salmon SuperDARN radar at relatively low magnetic latitudes of 65^0. The second focus is a validation work on the quality of SuperDARN convection measurements. As an alternative convection-monitoring instrument, an ion drift meter onboard the DMSP satellite was chosen for comparison with SuperDARN. This study includes a broad range of velocities of up to ~1.5 km/s. Consideration of very large velocities is fundamentally important for successful research on the major topic of the thesis.<p>The validation work is performed first. Two approaches are undertaken. The first approach considers data at the raw level. SuperDARN F region line-of-sight velocities are directly compared with DMSP cross-track ion drifts in approximately the same directions. More than 200 satellite passes over the fields of view of five Northern Hemisphere and four Southern Hemisphere radars are considered. It is shown that all radars exhibit overall consistency with DMSP measurements and a linear fit line to the data has a slope of 0.8 with a tendency for SuperDARN velocities to be smaller. Radar echo range effects and the role of spatial inhomogeneity and temporal variations of the convection pattern are investigated. SuperDARN convection maps were generated for select events for which SuperDARN l-o-s data agree almost ideally with DMSP measurements.<p>Convection maps were obtained using all Northern Hemisphere SuperDARN radars. The full convection vectors were found to be in reasonable agreement with the DMSP ion drifts, although a small deterioration (~10%) was noticed. The overall agreement between SuperDARN and DMSP measurements implies SuperDARN observations are reliable for velocity magnitudes of up to ~1.5 km/s, and SuperDARN radars are suitable instruments for studying extremely fast ionospheric flows. These results also imply that radar measurements can be merged with DMSP measurements into a common data set to provide more reliable convection maps.<p>For the main focus of the thesis, a statistical investigation of the King Salmon radar echoes was performed to determine typical echo characteristics and compare them with data from other SuperDARN radars. It is shown that King Salmon regularly observes high-velocity echoes in the dusk sector at ~21:00 MLT and ~65^0 MLat. Individual events are presented with line-of-sight velocities (observed with the L-shell aligned beams) as high as 2 km/s. Statistically, the enhanced flows are the largest and cover the greatest area in the winter and are the smallest and cover the least area in the summer. Similar fast flows were discovered in the Unwin radar data (in the Southern Hemisphere, lowest magnetic latitude ~57^0) that became available near the completion time of this thesis. It is also shown that statistically, the Stokkseyri radar, which observes in the auroral zone and has a similar azimuthal orientation as King Salmon, does not observe similar high-velocity echoes. Geophysical conditions for the onset of high-velocity King Salmon flows in several individual events are then investigated. It is shown that fast flows are excited in close association with substorm progression near the King Salmon field of view. By comparing SuperDARN data with optical images obtained from the IMAGE satellite and particle data from the DMSP satellites it is shown that velocity enhancement begins at substorm onset and peaks 20-50 minutes later over a range of latitudes including the auroral and sub-auroral regions. During the substorm recovery phase, as bright aurora shifts poleward, exceptionally fast flows can be excited at the equatorial edge of the electron auroral oval and these flows can be classified as sub-auroral polarization stream (SAPS) flows. Variability of SAPS flows and their relationship to auroral oval processes are discussed. Finally, several suggestions for further research are presented.

Page generated in 0.039 seconds