• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construction of Seifert surfaces by differential geometry

Dangskul, Supreedee January 2016 (has links)
A Seifert surface for a knot in ℝ³ is a compact orientable surface whose boundary is the knot. Seifert surfaces are not unique. In 1934 Herbert Seifert provided a construction of such a surface known as the Seifert Algorithm, using the combinatorics of a projection of the knot onto a plane. This thesis presents another construction of a Seifert surface, using differential geometry and a projection of the knot onto a sphere. Given a knot K : S¹⊂ R³, we construct canonical maps F : ΛdiffS² → ℝ=4πZ and G : ℝ³ - K(S¹) → ΛdiffS² where ΛdiffS² is the space of smooth loops in S². The composite FG : ℝ³ - K(S¹) → ℝ=4πZ is a smooth map defined for each u∈2 ℝ³ - K(S¹) by integration of a 2- form over an extension D² → S² of G(u) : S1 → S². The composite FG is a surjection which is a canonical representative of the generator 1∈H¹(ℝ³- K(S¹)) = Z. FG can be defined geometrically using the solid angle. Given u ∈ ℝ³ - K(S¹), choose a Seifert surface Σu for K with u ∉ Σu. It is shown that FG(u) is equal to the signed area of the shadow of Σu on the unit sphere centred at u. With this, FG(u) can be written as a line integral over the knot. By Sard's Theorem, FG has a regular value t ∈ ℝ=4πZ. The behaviour of FG near the knot is investigated in order to show that FG is a locally trivial fibration near the knot, using detailed differential analysis. Our main result is that (FG)-¹(t)⊂ ℝ³ can be closed to a Seifert surface by adding the knot.

Page generated in 0.0453 seconds